Answer
Verified
492.6k+ views
Hint: This is a question based on the section formula in 3D vector. The coordinates of two points P and Q in 3D are given and a line is formed by joining these points and we have to divide this line in 2:1 ratio. So, we will use section formula to find the coordinate of point R.
Complete step-by-step answer:
In the question, it is given that
Coordinates of point P is \[\mathop {\text{i}}\limits^ \wedge + 2\mathop {\text{j}}\limits^ \wedge - \mathop {\text{k}}\limits^ \wedge \] .
Coordinates of point Q is \[ - \mathop {\text{i}}\limits^ \wedge + \mathop {\text{j}}\limits^ \wedge + \mathop {\text{k}}\limits^ \wedge \] .
(I)
The figure for case when R divides PQ internally is:
We have assumed that the coordinate of point R is (X,Y,Z).
To find the coordinate of point R, we will use the section formula.
According to section formula, the coordinates of point R for the above case is given by:
$
{\text{X = }}\dfrac{{{\text{m}}{{\text{x}}_2} + {\text{n}}{{\text{x}}_1}}}{{{\text{m + n}}}} \\
{\text{Y = }}\dfrac{{{\text{m}}{{\text{y}}_2} + {\text{n}}{{\text{y}}_1}}}{{{\text{m + n}}}} \\
{\text{Z = }}\dfrac{{{\text{m}}{{\text{z}}_2} + {\text{n}}{{\text{z}}_1}}}{{{\text{m + n}}}} \\
$
From the given question, we can write:
$
{{\text{x}}_2} = - 1,{{\text{x}}_1} = 1 \\
{{\text{y}}_2} = 1,{{\text{y}}_1} = 2 \\
{{\text{z}}_2} = 1,{{\text{z}}_1} = - 1 \\
{\text{and }}\dfrac{{{\text{PR}}}}{{{\text{RQ}}}} = \dfrac{{\text{m}}}{{\text{n}}} = \dfrac{2}{1}. \\
$
Now, putting the above values in the section formula, we get:
$
{\text{X = }}\dfrac{{{\text{(2}} \times {\text{ - 1)}} + (1 \times 1)}}{{2 + 1}} = \dfrac{{ - 2 + 1}}{3} = \dfrac{{ - 1}}{3} \\
{\text{Y = }}\dfrac{{{\text{(2}} \times 1) + (1 \times 2)}}{{2 + 1}} = \dfrac{4}{3} \\
{\text{Z = }}\dfrac{{{\text{(2}} \times 1) + (1 \times - 1)}}{{2 + 1}} = \dfrac{{2 - 1}}{3} = \dfrac{1}{3} \\
$
So, coordinates of point R is $\left( {\dfrac{{ - 1}}{3},\dfrac{4}{3},\dfrac{1}{3}} \right)$ for the case of internal division.
(II)
In this case it is given that Point R divides PQ externally.
The figure for this case is:
Section formula for external division is given by:
$
{\text{X = }}\dfrac{{{\text{m}}{{\text{x}}_2}{\text{ - n}}{{\text{x}}_1}}}{{{\text{m + n}}}} \\
{\text{Y = }}\dfrac{{{\text{m}}{{\text{y}}_2}{\text{ - n}}{{\text{y}}_1}}}{{{\text{m + n}}}} \\
{\text{Z = }}\dfrac{{{\text{m}}{{\text{z}}_2}{\text{ - n}}{{\text{z}}_1}}}{{{\text{m + n}}}} \\
$
Now, putting the above values in the section formula, we get:
$
{\text{X = }}\dfrac{{{\text{(2}} \times {\text{ - 1) - }}(1 \times 1)}}{{2 + 1}} = \dfrac{{ - 2 - 1}}{3} = \dfrac{{ - 3}}{3} = - 1 \\
{\text{Y = }}\dfrac{{{\text{(2}} \times 1) - (1 \times 2)}}{{2 + 1}} = 0 \\
{\text{Z = }}\dfrac{{{\text{(2}} \times 1) - (1 \times - 1)}}{{2 + 1}} = \dfrac{{2 + 1}}{3} = \dfrac{3}{3} = 1 \\
$
So, coordinates of point R is $\left( { - 1,0,1} \right)$ for the case of external division.
Note: In this type of question, where 3D coordinates are given you should remember the section formula for 3D vector for both the cases i.e. external division and internal division. You should make a clear diagram for both the cases such that all the values are clearly visible.
Complete step-by-step answer:
In the question, it is given that
Coordinates of point P is \[\mathop {\text{i}}\limits^ \wedge + 2\mathop {\text{j}}\limits^ \wedge - \mathop {\text{k}}\limits^ \wedge \] .
Coordinates of point Q is \[ - \mathop {\text{i}}\limits^ \wedge + \mathop {\text{j}}\limits^ \wedge + \mathop {\text{k}}\limits^ \wedge \] .
(I)
The figure for case when R divides PQ internally is:
We have assumed that the coordinate of point R is (X,Y,Z).
To find the coordinate of point R, we will use the section formula.
According to section formula, the coordinates of point R for the above case is given by:
$
{\text{X = }}\dfrac{{{\text{m}}{{\text{x}}_2} + {\text{n}}{{\text{x}}_1}}}{{{\text{m + n}}}} \\
{\text{Y = }}\dfrac{{{\text{m}}{{\text{y}}_2} + {\text{n}}{{\text{y}}_1}}}{{{\text{m + n}}}} \\
{\text{Z = }}\dfrac{{{\text{m}}{{\text{z}}_2} + {\text{n}}{{\text{z}}_1}}}{{{\text{m + n}}}} \\
$
From the given question, we can write:
$
{{\text{x}}_2} = - 1,{{\text{x}}_1} = 1 \\
{{\text{y}}_2} = 1,{{\text{y}}_1} = 2 \\
{{\text{z}}_2} = 1,{{\text{z}}_1} = - 1 \\
{\text{and }}\dfrac{{{\text{PR}}}}{{{\text{RQ}}}} = \dfrac{{\text{m}}}{{\text{n}}} = \dfrac{2}{1}. \\
$
Now, putting the above values in the section formula, we get:
$
{\text{X = }}\dfrac{{{\text{(2}} \times {\text{ - 1)}} + (1 \times 1)}}{{2 + 1}} = \dfrac{{ - 2 + 1}}{3} = \dfrac{{ - 1}}{3} \\
{\text{Y = }}\dfrac{{{\text{(2}} \times 1) + (1 \times 2)}}{{2 + 1}} = \dfrac{4}{3} \\
{\text{Z = }}\dfrac{{{\text{(2}} \times 1) + (1 \times - 1)}}{{2 + 1}} = \dfrac{{2 - 1}}{3} = \dfrac{1}{3} \\
$
So, coordinates of point R is $\left( {\dfrac{{ - 1}}{3},\dfrac{4}{3},\dfrac{1}{3}} \right)$ for the case of internal division.
(II)
In this case it is given that Point R divides PQ externally.
The figure for this case is:
Section formula for external division is given by:
$
{\text{X = }}\dfrac{{{\text{m}}{{\text{x}}_2}{\text{ - n}}{{\text{x}}_1}}}{{{\text{m + n}}}} \\
{\text{Y = }}\dfrac{{{\text{m}}{{\text{y}}_2}{\text{ - n}}{{\text{y}}_1}}}{{{\text{m + n}}}} \\
{\text{Z = }}\dfrac{{{\text{m}}{{\text{z}}_2}{\text{ - n}}{{\text{z}}_1}}}{{{\text{m + n}}}} \\
$
Now, putting the above values in the section formula, we get:
$
{\text{X = }}\dfrac{{{\text{(2}} \times {\text{ - 1) - }}(1 \times 1)}}{{2 + 1}} = \dfrac{{ - 2 - 1}}{3} = \dfrac{{ - 3}}{3} = - 1 \\
{\text{Y = }}\dfrac{{{\text{(2}} \times 1) - (1 \times 2)}}{{2 + 1}} = 0 \\
{\text{Z = }}\dfrac{{{\text{(2}} \times 1) - (1 \times - 1)}}{{2 + 1}} = \dfrac{{2 + 1}}{3} = \dfrac{3}{3} = 1 \\
$
So, coordinates of point R is $\left( { - 1,0,1} \right)$ for the case of external division.
Note: In this type of question, where 3D coordinates are given you should remember the section formula for 3D vector for both the cases i.e. external division and internal division. You should make a clear diagram for both the cases such that all the values are clearly visible.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE