Answer
Verified
417.6k+ views
Hint: In the given question, we have been given an equation of a tangent line. We have to find the points where this line is horizontal. We are going to solve it by first simplifying the equation. Then we are going to find the derivative of the simplified equation of the given line. Then we are going to solve the equation. Then we are going to put the calculated points back into the original equation and find the value of the other variable. And that is going to give us our answer.
Formula Used:
We are going to use the formula of derivative, which is,
\[\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}\]
Complete step by step solution:
The given equation is \[y = 16{x^{ - 1}} - {x^2}\].
First, we are going to find the derivative of the given equation,
\[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {16{x^{ - 1}} - {x^2}} \right)}}{{dx}}\]
We are going to use the formula of derivative, which is,
\[\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}\]
So, we have,
\[\dfrac{{dy}}{{dx}} = - 16{x^{ - 2}} - 2x\]
Now, we are going to put it equal to zero and calculate the points,
\[ - \dfrac{{16}}{{{x^2}}} - 2x = 0\]
So, we have,
\[ - \dfrac{{16}}{{{x^2}}} = 2x\]
\[ \Rightarrow {x^3} = - 8\]
Hence, \[x = - 2\]
Now, let us put the calculated value back into the original equation,
\[y = \dfrac{{16}}{{\left( { - 2} \right)}} - {\left( { - 2} \right)^2} = - 8 - 4 = - 12\]
Thus, the required point is \[\left( { - 2, - 12} \right)\].
Note:
In the given question, we had to find the points where the given tangent line was horizontal. We solved it by first finding the derivative of the given line. Then we computed the value of the derivative by putting it equal to zero and found the value of the variable. Then we put the value of the variable back into the original equation and found the points.
Formula Used:
We are going to use the formula of derivative, which is,
\[\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}\]
Complete step by step solution:
The given equation is \[y = 16{x^{ - 1}} - {x^2}\].
First, we are going to find the derivative of the given equation,
\[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {16{x^{ - 1}} - {x^2}} \right)}}{{dx}}\]
We are going to use the formula of derivative, which is,
\[\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}\]
So, we have,
\[\dfrac{{dy}}{{dx}} = - 16{x^{ - 2}} - 2x\]
Now, we are going to put it equal to zero and calculate the points,
\[ - \dfrac{{16}}{{{x^2}}} - 2x = 0\]
So, we have,
\[ - \dfrac{{16}}{{{x^2}}} = 2x\]
\[ \Rightarrow {x^3} = - 8\]
Hence, \[x = - 2\]
Now, let us put the calculated value back into the original equation,
\[y = \dfrac{{16}}{{\left( { - 2} \right)}} - {\left( { - 2} \right)^2} = - 8 - 4 = - 12\]
Thus, the required point is \[\left( { - 2, - 12} \right)\].
Note:
In the given question, we had to find the points where the given tangent line was horizontal. We solved it by first finding the derivative of the given line. Then we computed the value of the derivative by putting it equal to zero and found the value of the variable. Then we put the value of the variable back into the original equation and found the points.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE