Answer
Verified
408.6k+ views
Hint:
Here we will find the value of the coordinate of the points where the given three lines intersect the given plane. As the given line intersects the plane so the value of the coordinate will satisfy the equation of the plane, so we will substitute the value of the points from the line into the plane and get the value of the variable \[t\]. Then we will substitute the value of the variable back in the equation of line to get the value of the coordinate to get the required answer.
Complete step by step solution:
The three lines given to us are
\[x = - 1 - t\]……\[\left( 1 \right)\]
\[y = 2 + t\]……\[\left( 2 \right)\]
\[z = 1 + t\]…….\[\left( 3 \right)\]
The plane at which the above line intersect is,
\[3x + y + 3z = 1\]
Substituting the value from equation \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\] in above value we get,
\[ \Rightarrow 3\left( { - 1 - t} \right) + \left( {2 + t} \right) + 3\left( {1 + t} \right) = 1\]
\[\begin{array}{l} \Rightarrow - 3 - 3t + 2 + t + 3 + 3t = 1\\ \Rightarrow 2 + t = 1\end{array}\]
Keeping \[t\] term on one side and taking rest to the other we get,
\[\begin{array}{l} \Rightarrow t = 1 - 2\\ \Rightarrow t = - 1\end{array}\]
So, we get the value of \[t\] as -1.
Substituting value of \[t\] in equation \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\], we get
\[x = - 1 - \left( { - 1} \right) = - 1 + 1 = 0\]
$y=2-1=1$
\[z = 1 - 1 = 0\]
So, we get our point as,
\[\left( {x,y,z} \right) = \left( {0,1,0} \right)\]
Note:
A plane is a two-dimensional surface that can extend to infinity on either direction. It can be anything, a line, a circle of even a triangle. Geometry of a plane is all about the shapes that are on a flat surface. When line and plane intersect the result can be either a line or a point or it can be an empty set. When a line intersects a plane all points of the line lie in the plane as well.
Here we will find the value of the coordinate of the points where the given three lines intersect the given plane. As the given line intersects the plane so the value of the coordinate will satisfy the equation of the plane, so we will substitute the value of the points from the line into the plane and get the value of the variable \[t\]. Then we will substitute the value of the variable back in the equation of line to get the value of the coordinate to get the required answer.
Complete step by step solution:
The three lines given to us are
\[x = - 1 - t\]……\[\left( 1 \right)\]
\[y = 2 + t\]……\[\left( 2 \right)\]
\[z = 1 + t\]…….\[\left( 3 \right)\]
The plane at which the above line intersect is,
\[3x + y + 3z = 1\]
Substituting the value from equation \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\] in above value we get,
\[ \Rightarrow 3\left( { - 1 - t} \right) + \left( {2 + t} \right) + 3\left( {1 + t} \right) = 1\]
\[\begin{array}{l} \Rightarrow - 3 - 3t + 2 + t + 3 + 3t = 1\\ \Rightarrow 2 + t = 1\end{array}\]
Keeping \[t\] term on one side and taking rest to the other we get,
\[\begin{array}{l} \Rightarrow t = 1 - 2\\ \Rightarrow t = - 1\end{array}\]
So, we get the value of \[t\] as -1.
Substituting value of \[t\] in equation \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\], we get
\[x = - 1 - \left( { - 1} \right) = - 1 + 1 = 0\]
$y=2-1=1$
\[z = 1 - 1 = 0\]
So, we get our point as,
\[\left( {x,y,z} \right) = \left( {0,1,0} \right)\]
Note:
A plane is a two-dimensional surface that can extend to infinity on either direction. It can be anything, a line, a circle of even a triangle. Geometry of a plane is all about the shapes that are on a flat surface. When line and plane intersect the result can be either a line or a point or it can be an empty set. When a line intersects a plane all points of the line lie in the plane as well.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths