Answer
Verified
454.8k+ views
Hint:Oxidation number is defined as the total number of electrons than an atom either gains or loses in order to form a chemical bond with the atom and form a compound.
Complete step by step answer:
Iodine belongs from the $7A$ group and it is a non-metal and having oxidation state $ - 1$ i.e., it always needs 1 electron to complete its octet and come in stable state. For example, if we consider $\mathop {BrCl}\nolimits_2 $ in this bromine having oxidation state of $ + 2$ because $Cl$ is more electronegative. For calculating the oxidation number, we take all the charges on the right-hand side and equal to zero.
The oxidation state is the number of electrons that are lost, gained, or shared by a certain atom with other atoms in the same molecule
Here, we will focus on all the fixed components and then work out the oxidation state of $I$. The net charge on the molecule is 0. Therefore, all the oxidation states will add up to 0 after they are multiplied by the number of molecules.
\[({\text{oxidation state of}} K) + ({\text{oxidation state of I}}) + (3 \times {\text{oxidation state of O}}) = 0\]
Let the oxidation state of $I$ be $x$
We know that almost all elements from group 1 have an oxidation state of $ + 1$. This rule never changes. Thus, we will assume that the oxidation state of $K$ is $ + 1$. And the oxidation state of $O$ is $ - 2$.
Now plugging in the numbers in the equation given above, we get,
\[[ + 1] + [x] + [3 \times ( - 2)] = 0\]
$ \Rightarrow 1 + x - 6 = 0$
$ \Rightarrow x - 5 - 0$
$ \Rightarrow x = + 5$
So, the oxidation state of $I$ is $ + 5$
Thus, the oxidation state of $I$ $ + 5$ is when the oxidation states of $K$ and $O$ are $ + 1$ and $ - 2$ respectively.
Note:Always check what the net charge on the given ion or molecule is, this will change the number present on the R.H.S. of the equation.
For example: If we consider \[\mathop {SO}\nolimits_4^{2 - } \] then to calculate the oxidation state of $S$, we need to consider the equation.
\[({\text{oxidation state of S}}) + (4 \times {\text{oxidation state of O}}) = - 2\]
Let the oxidation state of $S$ be $x$
Then, $[x] + [4 \times ( - 2)] = - 2$
$ \Rightarrow x + ( - 8) = - 2$
$ \Rightarrow x = + 6$
Here the oxidation state of S will be +6. If we do not pay attention to the net charge, the answer will turn out to be +8, which is not possible
Complete step by step answer:
Iodine belongs from the $7A$ group and it is a non-metal and having oxidation state $ - 1$ i.e., it always needs 1 electron to complete its octet and come in stable state. For example, if we consider $\mathop {BrCl}\nolimits_2 $ in this bromine having oxidation state of $ + 2$ because $Cl$ is more electronegative. For calculating the oxidation number, we take all the charges on the right-hand side and equal to zero.
The oxidation state is the number of electrons that are lost, gained, or shared by a certain atom with other atoms in the same molecule
Here, we will focus on all the fixed components and then work out the oxidation state of $I$. The net charge on the molecule is 0. Therefore, all the oxidation states will add up to 0 after they are multiplied by the number of molecules.
\[({\text{oxidation state of}} K) + ({\text{oxidation state of I}}) + (3 \times {\text{oxidation state of O}}) = 0\]
Let the oxidation state of $I$ be $x$
We know that almost all elements from group 1 have an oxidation state of $ + 1$. This rule never changes. Thus, we will assume that the oxidation state of $K$ is $ + 1$. And the oxidation state of $O$ is $ - 2$.
Now plugging in the numbers in the equation given above, we get,
\[[ + 1] + [x] + [3 \times ( - 2)] = 0\]
$ \Rightarrow 1 + x - 6 = 0$
$ \Rightarrow x - 5 - 0$
$ \Rightarrow x = + 5$
So, the oxidation state of $I$ is $ + 5$
Thus, the oxidation state of $I$ $ + 5$ is when the oxidation states of $K$ and $O$ are $ + 1$ and $ - 2$ respectively.
Note:Always check what the net charge on the given ion or molecule is, this will change the number present on the R.H.S. of the equation.
For example: If we consider \[\mathop {SO}\nolimits_4^{2 - } \] then to calculate the oxidation state of $S$, we need to consider the equation.
\[({\text{oxidation state of S}}) + (4 \times {\text{oxidation state of O}}) = - 2\]
Let the oxidation state of $S$ be $x$
Then, $[x] + [4 \times ( - 2)] = - 2$
$ \Rightarrow x + ( - 8) = - 2$
$ \Rightarrow x = + 6$
Here the oxidation state of S will be +6. If we do not pay attention to the net charge, the answer will turn out to be +8, which is not possible
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE