Answer
Verified
464.1k+ views
Hint: We will use the fact that we will have as much constants as the order of the equation. By using this fact, we will get the answer of 3 arbitrary constants in the answer and thus C) being the answer.
Complete step-by-step answer:
We will use the fact that we will have as many constants as the order of the equation.
Before using this fact, let us get to know where this arises from.
When we have an equation of degree 3 with us, we can integrate it on both the sides.
By integrating it, we will get one constant in the new equation with degree 2.
Now, if we integrate it again, we will get one more constant and new equation with degree 1.
Now, we have to repeat the integration which will lead us to 3 arbitrary constants in all and we will get the equation of the curve finally.
Let us see an example to get a clearer picture.
Take $\dfrac{{{d^3}y}}{{d{x^3}}} = 1$.
Integrating this on both sides, we get: $\dfrac{{{d^2}y}}{{d{x^2}}} = x + a$, where a is the first arbitrary constant.
Integrating again, we will get: $\dfrac{{dy}}{{dx}} = \dfrac{{{x^2}}}{2} + ax + b$, where b is the second arbitrary constant.
Integrating for the last time, we have: $y = \dfrac{{{x^3}}}{6} + \dfrac{{a{x^2}}}{2} + bx + c$, where c is the third arbitrary constant.
Hence, we get three arbitrary constants for third order equations.
Hence, we can use this fact now.
Hence, the answer will be 3
So, the correct answer is “Option C”.
Note: The students might make the mistake if the question had the word “particular solution” instead of general solution because in particular solution, we have 0 arbitrary constants. Always do remember the difference.
Never do any solution with the use of an example. Here, we saw an example to understand the view point better, not to prove our fact.
Complete step-by-step answer:
We will use the fact that we will have as many constants as the order of the equation.
Before using this fact, let us get to know where this arises from.
When we have an equation of degree 3 with us, we can integrate it on both the sides.
By integrating it, we will get one constant in the new equation with degree 2.
Now, if we integrate it again, we will get one more constant and new equation with degree 1.
Now, we have to repeat the integration which will lead us to 3 arbitrary constants in all and we will get the equation of the curve finally.
Let us see an example to get a clearer picture.
Take $\dfrac{{{d^3}y}}{{d{x^3}}} = 1$.
Integrating this on both sides, we get: $\dfrac{{{d^2}y}}{{d{x^2}}} = x + a$, where a is the first arbitrary constant.
Integrating again, we will get: $\dfrac{{dy}}{{dx}} = \dfrac{{{x^2}}}{2} + ax + b$, where b is the second arbitrary constant.
Integrating for the last time, we have: $y = \dfrac{{{x^3}}}{6} + \dfrac{{a{x^2}}}{2} + bx + c$, where c is the third arbitrary constant.
Hence, we get three arbitrary constants for third order equations.
Hence, we can use this fact now.
Hence, the answer will be 3
So, the correct answer is “Option C”.
Note: The students might make the mistake if the question had the word “particular solution” instead of general solution because in particular solution, we have 0 arbitrary constants. Always do remember the difference.
Never do any solution with the use of an example. Here, we saw an example to understand the view point better, not to prove our fact.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE