Find the multiplicative inverse of the complex numbers given.
\[\left( {4 - 3i} \right)\]
Last updated date: 22nd Mar 2023
•
Total views: 303.9k
•
Views today: 5.83k
Answer
303.9k+ views
Hint- If Z is a complex number, and then the multiplicative inverse of the complex number is given by
${z^{ - 1}} = \overline {\dfrac{z}{{{{\left| z \right|}^2}}}} $ . Where z is a complex number of the form \[a + ib\] and its conjugate is \[a - ib\] .
Complete step-by-step solution -
Let $z = 4 - 3i$
As we know that to find the conjugate of a number, we replace i by –i.
Then $\overline z = 4 + 3i$
Now, we have to find the magnitude of z
As we know that if \[z{\text{ }} = a + ib\] then ,
$\left| z \right| = \sqrt {{a^2} + {b^2}} $
$
\therefore \left| z \right| = \sqrt {{4^2} + {{( - 3)}^2}} \\
\Rightarrow \left| z \right| = \sqrt {16 + 9} \\
\Rightarrow \left| z \right| = 5 \\
$
Therefore, the multiplicative inverse of z is given by
${z^{ - 1}} = \overline {\dfrac{z}{{{{\left| z \right|}^2}}}} $
Substituting the value of $\overline z {\text{ and }}\left| z \right|$ in the above equation, we get
\[
\Rightarrow {z^{ - 1}} = \dfrac{{4 + 3i}}{{{5^2}}} \\
\Rightarrow {z^{ - 1}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i \\
\]
Hence, the multiplicative inverse of z is \[{z^{ - 1}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i\] .
Note- The number in the form of \[a + ib\] is known as complex numbers where a is the real part and b is the imaginary part. The above question can also be solved by writing the \[a + ib\] in reciprocal form and multiply and divide it with the conjugate of \[a + ib\] . After simplifying we will get the multiplicative inverse of the given complex number. The same way we do with the real numbers.
${z^{ - 1}} = \overline {\dfrac{z}{{{{\left| z \right|}^2}}}} $ . Where z is a complex number of the form \[a + ib\] and its conjugate is \[a - ib\] .
Complete step-by-step solution -
Let $z = 4 - 3i$
As we know that to find the conjugate of a number, we replace i by –i.
Then $\overline z = 4 + 3i$
Now, we have to find the magnitude of z
As we know that if \[z{\text{ }} = a + ib\] then ,
$\left| z \right| = \sqrt {{a^2} + {b^2}} $
$
\therefore \left| z \right| = \sqrt {{4^2} + {{( - 3)}^2}} \\
\Rightarrow \left| z \right| = \sqrt {16 + 9} \\
\Rightarrow \left| z \right| = 5 \\
$
Therefore, the multiplicative inverse of z is given by
${z^{ - 1}} = \overline {\dfrac{z}{{{{\left| z \right|}^2}}}} $
Substituting the value of $\overline z {\text{ and }}\left| z \right|$ in the above equation, we get
\[
\Rightarrow {z^{ - 1}} = \dfrac{{4 + 3i}}{{{5^2}}} \\
\Rightarrow {z^{ - 1}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i \\
\]
Hence, the multiplicative inverse of z is \[{z^{ - 1}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i\] .
Note- The number in the form of \[a + ib\] is known as complex numbers where a is the real part and b is the imaginary part. The above question can also be solved by writing the \[a + ib\] in reciprocal form and multiply and divide it with the conjugate of \[a + ib\] . After simplifying we will get the multiplicative inverse of the given complex number. The same way we do with the real numbers.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
