
Find the modulus of the complex number \[Z = 2 + 3i\].
Answer
506.4k+ views
Hint:Let \[Z = a + bi\] be a complex number. Then, the modulus of a complex number $Z$ , denoted by $\left| Z \right|$ , is defined to be the non-negative real number $\left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} $.
Complete step-by-step answer:
Given, complex number \[Z = 2 + 3i\] .
Real part of complex number $Z$ is $\operatorname{Re} \left( Z \right) = a = 2$ .
Imaginary part of complex number $Z$ is $\operatorname{Im} \left( Z \right) = b = 3$ .
Now, we apply the formula of modulus of complex number $Z$ .
$\left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} $
Put the value of a and b in the above formula.
\[
\Rightarrow \left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} \\
\Rightarrow \left| Z \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2}} \\
\Rightarrow \left| Z \right| = \sqrt {4 + 9} \\
\Rightarrow \left| Z \right| = \sqrt {13} \\
\]
So, the modulus of complex number \[Z = 2 + 3i\] is \[\sqrt {13} \] .
Note: Whenever we face such types of problems we use some important points. First we find real and imaginary parts of complex numbers then apply the formula of modulus of complex number then after solving we can get the required answer.
Complete step-by-step answer:
Given, complex number \[Z = 2 + 3i\] .
Real part of complex number $Z$ is $\operatorname{Re} \left( Z \right) = a = 2$ .
Imaginary part of complex number $Z$ is $\operatorname{Im} \left( Z \right) = b = 3$ .
Now, we apply the formula of modulus of complex number $Z$ .
$\left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} $
Put the value of a and b in the above formula.
\[
\Rightarrow \left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} \\
\Rightarrow \left| Z \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2}} \\
\Rightarrow \left| Z \right| = \sqrt {4 + 9} \\
\Rightarrow \left| Z \right| = \sqrt {13} \\
\]
So, the modulus of complex number \[Z = 2 + 3i\] is \[\sqrt {13} \] .
Note: Whenever we face such types of problems we use some important points. First we find real and imaginary parts of complex numbers then apply the formula of modulus of complex number then after solving we can get the required answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

