Find the modulus of the complex number \[Z = 2 + 3i\].
Answer
261k+ views
Hint:Let \[Z = a + bi\] be a complex number. Then, the modulus of a complex number $Z$ , denoted by $\left| Z \right|$ , is defined to be the non-negative real number $\left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} $.
Complete step-by-step answer:
Given, complex number \[Z = 2 + 3i\] .
Real part of complex number $Z$ is $\operatorname{Re} \left( Z \right) = a = 2$ .
Imaginary part of complex number $Z$ is $\operatorname{Im} \left( Z \right) = b = 3$ .
Now, we apply the formula of modulus of complex number $Z$ .
$\left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} $
Put the value of a and b in the above formula.
\[
\Rightarrow \left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} \\
\Rightarrow \left| Z \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2}} \\
\Rightarrow \left| Z \right| = \sqrt {4 + 9} \\
\Rightarrow \left| Z \right| = \sqrt {13} \\
\]
So, the modulus of complex number \[Z = 2 + 3i\] is \[\sqrt {13} \] .
Note: Whenever we face such types of problems we use some important points. First we find real and imaginary parts of complex numbers then apply the formula of modulus of complex number then after solving we can get the required answer.
Complete step-by-step answer:
Given, complex number \[Z = 2 + 3i\] .
Real part of complex number $Z$ is $\operatorname{Re} \left( Z \right) = a = 2$ .
Imaginary part of complex number $Z$ is $\operatorname{Im} \left( Z \right) = b = 3$ .
Now, we apply the formula of modulus of complex number $Z$ .
$\left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} $
Put the value of a and b in the above formula.
\[
\Rightarrow \left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} \\
\Rightarrow \left| Z \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2}} \\
\Rightarrow \left| Z \right| = \sqrt {4 + 9} \\
\Rightarrow \left| Z \right| = \sqrt {13} \\
\]
So, the modulus of complex number \[Z = 2 + 3i\] is \[\sqrt {13} \] .
Note: Whenever we face such types of problems we use some important points. First we find real and imaginary parts of complex numbers then apply the formula of modulus of complex number then after solving we can get the required answer.
Last updated date: 25th Sep 2023
•
Total views: 261k
•
Views today: 2.61k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG
