Answer
Verified
426.3k+ views
Hint:Start by mentioning all the formulas that are necessary in these types of questions. Then next start by evaluating the perimeter of the rectangle then further evaluate the area of the rectangle. The perimeter and area of the rectangle are given by $2(l + b)$ and $A = l \times b$.
Complete step by step answer:
First we will start off by mentioning the formula for the perimeter of the rectangle, which is given by $2(l + b)$ where $l$ is the length of the rectangle and $b$is the breadth or width of the rectangle. here, consider the values of length and breadth as $x,y$. Now, we will substitute the values of the terms in the above mentioned formula,
\[
P = 2(l + b) \\
\Rightarrow 40 = 2(x + y) \\
\Rightarrow 40 = 2x + 2y \\
\Rightarrow 20 = x + y \\
\Rightarrow y = 20 - x \\ \]
Now we will evaluate the area of the rectangle. Area of the rectangle is given by the formula,
$A = l \times b$ where $l$ is the length of the rectangle and $b$is the breadth or width of the rectangle. Now, we will substitute the values of the terms in the above mentioned formula,
$
A = x \times y \\
\Rightarrow A = x \times (20 - x) \\
\Rightarrow A = 20x - {x^2} \\ $
Now, here we have to evaluate an extreme for that.
We can do this by equating the value of the derivative equal to zero.
$
A = 20x - {x^2} \\
\Rightarrow A' = 20 - 2x \\ $
Now we will equate the derivative to zero.
$
20 - 2x = 0 \\
\Rightarrow 2x = 20 \\
\Rightarrow x = 10 \\ $
Here, we have evaluated the length of the rectangle and now we evaluate the width of the rectangle.
$
y = 20 - x \\
\Rightarrow y = 20 - 10 \\
\Rightarrow y = 10 \\ $
Hence, now we evaluate the area of the rectangle.
$
A = x \times y \\
\Rightarrow A = 10 \times 10 \\
\therefore A = 100 \\ $
Hence, the maximum area of the rectangle is $100\,\,sq.units$.
Note:While substituting the terms make sure you are taking into account the correct dimensions along with their units. Check if all the given terms have the same units, if not then convert all the terms to one single unit.The perimeter of a rectangle is the total length of all the sides of the rectangle. Hence, we can evaluate the perimeter by adding all four sides of a rectangle. Since opposite sides of a rectangle are always equal we need to evaluate only two sides to calculate the perimeter of the rectangle.
Complete step by step answer:
First we will start off by mentioning the formula for the perimeter of the rectangle, which is given by $2(l + b)$ where $l$ is the length of the rectangle and $b$is the breadth or width of the rectangle. here, consider the values of length and breadth as $x,y$. Now, we will substitute the values of the terms in the above mentioned formula,
\[
P = 2(l + b) \\
\Rightarrow 40 = 2(x + y) \\
\Rightarrow 40 = 2x + 2y \\
\Rightarrow 20 = x + y \\
\Rightarrow y = 20 - x \\ \]
Now we will evaluate the area of the rectangle. Area of the rectangle is given by the formula,
$A = l \times b$ where $l$ is the length of the rectangle and $b$is the breadth or width of the rectangle. Now, we will substitute the values of the terms in the above mentioned formula,
$
A = x \times y \\
\Rightarrow A = x \times (20 - x) \\
\Rightarrow A = 20x - {x^2} \\ $
Now, here we have to evaluate an extreme for that.
We can do this by equating the value of the derivative equal to zero.
$
A = 20x - {x^2} \\
\Rightarrow A' = 20 - 2x \\ $
Now we will equate the derivative to zero.
$
20 - 2x = 0 \\
\Rightarrow 2x = 20 \\
\Rightarrow x = 10 \\ $
Here, we have evaluated the length of the rectangle and now we evaluate the width of the rectangle.
$
y = 20 - x \\
\Rightarrow y = 20 - 10 \\
\Rightarrow y = 10 \\ $
Hence, now we evaluate the area of the rectangle.
$
A = x \times y \\
\Rightarrow A = 10 \times 10 \\
\therefore A = 100 \\ $
Hence, the maximum area of the rectangle is $100\,\,sq.units$.
Note:While substituting the terms make sure you are taking into account the correct dimensions along with their units. Check if all the given terms have the same units, if not then convert all the terms to one single unit.The perimeter of a rectangle is the total length of all the sides of the rectangle. Hence, we can evaluate the perimeter by adding all four sides of a rectangle. Since opposite sides of a rectangle are always equal we need to evaluate only two sides to calculate the perimeter of the rectangle.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE