Answer
Verified
424.5k+ views
Hint: Here, we are required to find the linear equation of the plane through the given point which contains the line with the given vector equation. Thus, we will use the parametric form of equation of line and substitute the given values and with the help of plane and vector equation, we will solve it further to find the required linear equation of the given plane.
Formula Used:
1. The parametric line equation is given by: $p = {p_0} + t \cdot \overrightarrow v $
2. The plane equation is given by: $\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Complete step-by-step answer:
As we know,
The parametric line equation is given by:
$p = {p_0} + t \cdot \overrightarrow v $
Where, $p = \left\{ {x,y,z} \right\}$, ${p_0} = \left\{ {0,6,1} \right\}$ and $\overrightarrow v = \left\{ {3, - 2, - 2} \right\}$
Also, the plane equation is given by
$\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Here, according to the question, we have, ${p_1} = \left\{ {1,2,3} \right\}$and $\overrightarrow w $ is perpendicular to $\overrightarrow v $ and to the segment ${p_1} - {p_0}$ such that:
$\overrightarrow w = \overrightarrow v \times \left( {{p_1} - {p_0}} \right) = \left\{ {3, - 2, - 2} \right\} \times \left\{ {1, - 4, - 2} \right\}$
Then,
$\overrightarrow w = \left\{ { - 4,4, - 10} \right\}$
The plane equation is given as:
$\left( { - 4} \right)\left( {x - 1} \right) + 4\left( {y - 2} \right) + \left( { - 10} \right)\left( {z - 3} \right) = 0$
$ \Rightarrow - 4x + 4 + 4y - 8 - 10z + 30 = 0$
Solving the like terms further, we get,
$ \Rightarrow - 4x + 4y - 10z + 26 = 0$
Therefore, the linear equation of the plane through the point $\left( {1,2,3} \right)$ which contains the line represented by the vector equation $r\left( t \right) = \left\langle {3t,6 - 2t,1 - 2t} \right\rangle $ is represented by $ - 4x + 4y - 10z + 26 = 0$.
Hence, this is the required answer.
Note:
Parametric equation is a type of equation that employs an independent variable called a parameter (often denoted by $t$) and in which dependent variables are defined as continuous functions of the parameter and are not dependent on another existing variable. Also, a vector equation is any function that takes any one or more variables and returns a vector. The vector equation of a line is an equation that identifies the position vector of every point along the line.
Formula Used:
1. The parametric line equation is given by: $p = {p_0} + t \cdot \overrightarrow v $
2. The plane equation is given by: $\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Complete step-by-step answer:
As we know,
The parametric line equation is given by:
$p = {p_0} + t \cdot \overrightarrow v $
Where, $p = \left\{ {x,y,z} \right\}$, ${p_0} = \left\{ {0,6,1} \right\}$ and $\overrightarrow v = \left\{ {3, - 2, - 2} \right\}$
Also, the plane equation is given by
$\left\langle {\overrightarrow w ,p - {p_1}} \right\rangle = 0$
Here, according to the question, we have, ${p_1} = \left\{ {1,2,3} \right\}$and $\overrightarrow w $ is perpendicular to $\overrightarrow v $ and to the segment ${p_1} - {p_0}$ such that:
$\overrightarrow w = \overrightarrow v \times \left( {{p_1} - {p_0}} \right) = \left\{ {3, - 2, - 2} \right\} \times \left\{ {1, - 4, - 2} \right\}$
Then,
$\overrightarrow w = \left\{ { - 4,4, - 10} \right\}$
The plane equation is given as:
$\left( { - 4} \right)\left( {x - 1} \right) + 4\left( {y - 2} \right) + \left( { - 10} \right)\left( {z - 3} \right) = 0$
$ \Rightarrow - 4x + 4 + 4y - 8 - 10z + 30 = 0$
Solving the like terms further, we get,
$ \Rightarrow - 4x + 4y - 10z + 26 = 0$
Therefore, the linear equation of the plane through the point $\left( {1,2,3} \right)$ which contains the line represented by the vector equation $r\left( t \right) = \left\langle {3t,6 - 2t,1 - 2t} \right\rangle $ is represented by $ - 4x + 4y - 10z + 26 = 0$.
Hence, this is the required answer.
Note:
Parametric equation is a type of equation that employs an independent variable called a parameter (often denoted by $t$) and in which dependent variables are defined as continuous functions of the parameter and are not dependent on another existing variable. Also, a vector equation is any function that takes any one or more variables and returns a vector. The vector equation of a line is an equation that identifies the position vector of every point along the line.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE