Answer
Verified
406.8k+ views
Hint: To find the limits of any function, we have to put values in the function, after applying limit if the function is in the determinate form or we will get finite value then we will proceed further and get answer otherwise if the function is in the indeterminate form as $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ then we will use L‘Hospital’s Rule and then get value of function in determinate or finite form and then proceed further to get answer.
Formula/concept used:
L'hospital's rule –
When any function after applying limits gives you a value of function as indeterminate form or infinite then we have to differentiate numerator and denominator separately to obtain a finite or determinable value.
Complete step by step solution: We have given function $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( x \right)}}{{2{x^2} - x}}$
Now, we put limit value in function which is $x \to 0$ , so we get:
$ \Rightarrow \dfrac{{\sin \left( 0 \right)}}{{2{{\left( 0 \right)}^2} - 0}} = \dfrac{0}{0}$
We obtain resultant after putting limit it is in indeterminate form i.e. $\dfrac{0}{0}$
We will apply l ‘Hospital’s Rule we will differentiate parts of fraction numerator and denominator separately, we obtain:
$ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}\left( {\sin \left( x \right)} \right)}}{{\left( {2{x^2} - x} \right)}}$
$ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\cos \left( x \right)}}{{4{x^2} - 1}}$
We know that
$\left\{ {\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x{\text{ & }}\dfrac{d}{{dx}}\left( {{x^2}} \right) = 2x{\text{ & }}\dfrac{d}{{dx}}\left( x \right) = 1} \right\}$
Now,
Substituting variable of the function with the value of limit given, we get:
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\cos \left( x \right)}}{{4{x^2} - 1}}$
On simplifying we get $ = \dfrac{{\cos \left( 0 \right)}}{{4\left( 0 \right) - 1}} = \dfrac{1}{{0 - 1}}$
We get $ = \dfrac{1}{{ - 1}}$
$ = - 1$
Therefore, we get limit of given function $\dfrac{{\sin x}}{{2{x^2} - x}}$ as $x$ approaches $0$is
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( x \right)}}{{2{x^2} - x}} = - 1$
Note:
After applying L'hospital's Rule to the function if we again get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form, then again apply the L hospital’s Rule. So, stop applying the rule when you have a determinable or finite form of the given function.
If we do not get the determinable form then we have to apply Cauchy mean value theorem for Taylor series.
Formula/concept used:
L'hospital's rule –
When any function after applying limits gives you a value of function as indeterminate form or infinite then we have to differentiate numerator and denominator separately to obtain a finite or determinable value.
Complete step by step solution: We have given function $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( x \right)}}{{2{x^2} - x}}$
Now, we put limit value in function which is $x \to 0$ , so we get:
$ \Rightarrow \dfrac{{\sin \left( 0 \right)}}{{2{{\left( 0 \right)}^2} - 0}} = \dfrac{0}{0}$
We obtain resultant after putting limit it is in indeterminate form i.e. $\dfrac{0}{0}$
We will apply l ‘Hospital’s Rule we will differentiate parts of fraction numerator and denominator separately, we obtain:
$ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}\left( {\sin \left( x \right)} \right)}}{{\left( {2{x^2} - x} \right)}}$
$ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\cos \left( x \right)}}{{4{x^2} - 1}}$
We know that
$\left\{ {\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x{\text{ & }}\dfrac{d}{{dx}}\left( {{x^2}} \right) = 2x{\text{ & }}\dfrac{d}{{dx}}\left( x \right) = 1} \right\}$
Now,
Substituting variable of the function with the value of limit given, we get:
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\cos \left( x \right)}}{{4{x^2} - 1}}$
On simplifying we get $ = \dfrac{{\cos \left( 0 \right)}}{{4\left( 0 \right) - 1}} = \dfrac{1}{{0 - 1}}$
We get $ = \dfrac{1}{{ - 1}}$
$ = - 1$
Therefore, we get limit of given function $\dfrac{{\sin x}}{{2{x^2} - x}}$ as $x$ approaches $0$is
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( x \right)}}{{2{x^2} - x}} = - 1$
Note:
After applying L'hospital's Rule to the function if we again get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form, then again apply the L hospital’s Rule. So, stop applying the rule when you have a determinable or finite form of the given function.
If we do not get the determinable form then we have to apply Cauchy mean value theorem for Taylor series.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE