
Find the length of the arc in terms of \[\pi \] that subtends an angle of \[{{30}^{o}}\] at the center of a circle of radius 4 cm.
Answer
613.5k+ views
Hint: First of all convert \[{{30}^{o}}\] in radians by multiplying it by \[\dfrac{\pi }{180}\]. Then use the formula for the length of arc which subtends angle at the center, \[\theta =R\theta \] where R is the radius of the circle and \[\theta \] is in radians.
Here, we are given a circle of radius 4 cm in which an arc subtends an angle of \[{{30}^{o}}\] at the center. We have to find the length of this arc in terms of \[\pi \].
First of all, we must know that an arc of a circle is a portion of the circumference of the circle. The length of the arc is simply the length of its portion of circumference. Also, the circumference itself can be considered a full circle arc length.
We have two types of arc between any two points in a circle. One is the major arc and other is the minor arc. We know that the total angle at the center of the circle is \[2\pi \]. Here, the shorter arc made by AB which subtends angle \[\theta \] at the center of the circle is a minor arc. Then, the longer arc made by AB which subtends angle \[\left( 2\pi -\theta \right)\] at the center of the circle is the major arc.
Here, as we can see, \[\left( 2\pi -\theta \right)>\theta \].
Now, we know the circumference of the circle \[=2\pi R\], where R is the radius of the circle.
We know that circumference is also an arc of full circle arc length. Therefore, we can say that the length of the arc made by \[2\pi \] angle = \[2\pi R\].
By dividing \[2\pi \] on both sides, we get the length of the arc made by unit angle = R.
By multiplying \[\theta \] [in radian] on both sides, we get, length of the arc made by \[\theta \] angle \[=R\theta ....\left( i \right)\].
Now, we have to find the length of the arc which subtends an angle of \[{{30}^{o}}\] at the center.
We can show it diagrammatically as follows,
Here, we have to find the length of minor arc AB. As we have to find the length in terms of \[\pi \], we will first convert \[{{30}^{o}}\] into radians.
We know that, to convert any angle from degree to radians, we must multiply it by \[\dfrac{\pi }{180}\],
So, we get \[{{30}^{o}}=30\times \dfrac{\pi }{180}\text{radians}\]
By simplifying, we get
\[{{30}^{o}}=\dfrac{\pi }{6}\text{radians}\]
Now, to find the length of arc subtended by \[\dfrac{\pi }{6}\] angle,
We will put \[\theta =\dfrac{\pi }{6}\] and R = 4 cm in equation (i), so we get,
Length of the arc made by \[\dfrac{\pi }{6}\] radian angle \[=\dfrac{\pi }{6}\times 4cm\]
\[=\dfrac{2\pi }{3}cm\]
Therefore, we get the length of the arc which subtends an angle of \[{{30}^{o}}\] at the center of the circle in terms of \[\pi \] as \[\dfrac{2\pi }{3}cm\].
Note: Students can also find the length of the arc directly by remembering the following formulas.
Length of arc = \[R\theta \] when \[\theta \] is in radian and length of arc \[=\dfrac{R\theta \pi }{{{180}^{o}}}\] when \[\theta \] is in degrees.
Also, students must properly read if the major or minor arc is asked in question and use \[\theta \] accordingly.
Here, we are given a circle of radius 4 cm in which an arc subtends an angle of \[{{30}^{o}}\] at the center. We have to find the length of this arc in terms of \[\pi \].
First of all, we must know that an arc of a circle is a portion of the circumference of the circle. The length of the arc is simply the length of its portion of circumference. Also, the circumference itself can be considered a full circle arc length.
We have two types of arc between any two points in a circle. One is the major arc and other is the minor arc. We know that the total angle at the center of the circle is \[2\pi \]. Here, the shorter arc made by AB which subtends angle \[\theta \] at the center of the circle is a minor arc. Then, the longer arc made by AB which subtends angle \[\left( 2\pi -\theta \right)\] at the center of the circle is the major arc.
Here, as we can see, \[\left( 2\pi -\theta \right)>\theta \].
Now, we know the circumference of the circle \[=2\pi R\], where R is the radius of the circle.
We know that circumference is also an arc of full circle arc length. Therefore, we can say that the length of the arc made by \[2\pi \] angle = \[2\pi R\].
By dividing \[2\pi \] on both sides, we get the length of the arc made by unit angle = R.
By multiplying \[\theta \] [in radian] on both sides, we get, length of the arc made by \[\theta \] angle \[=R\theta ....\left( i \right)\].
Now, we have to find the length of the arc which subtends an angle of \[{{30}^{o}}\] at the center.
We can show it diagrammatically as follows,
Here, we have to find the length of minor arc AB. As we have to find the length in terms of \[\pi \], we will first convert \[{{30}^{o}}\] into radians.
We know that, to convert any angle from degree to radians, we must multiply it by \[\dfrac{\pi }{180}\],
So, we get \[{{30}^{o}}=30\times \dfrac{\pi }{180}\text{radians}\]
By simplifying, we get
\[{{30}^{o}}=\dfrac{\pi }{6}\text{radians}\]
Now, to find the length of arc subtended by \[\dfrac{\pi }{6}\] angle,
We will put \[\theta =\dfrac{\pi }{6}\] and R = 4 cm in equation (i), so we get,
Length of the arc made by \[\dfrac{\pi }{6}\] radian angle \[=\dfrac{\pi }{6}\times 4cm\]
\[=\dfrac{2\pi }{3}cm\]
Therefore, we get the length of the arc which subtends an angle of \[{{30}^{o}}\] at the center of the circle in terms of \[\pi \] as \[\dfrac{2\pi }{3}cm\].
Note: Students can also find the length of the arc directly by remembering the following formulas.
Length of arc = \[R\theta \] when \[\theta \] is in radian and length of arc \[=\dfrac{R\theta \pi }{{{180}^{o}}}\] when \[\theta \] is in degrees.
Also, students must properly read if the major or minor arc is asked in question and use \[\theta \] accordingly.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

