Answer
Verified
389.4k+ views
Hint: To find the inverse of $f\left( x \right)=-{{x}^{2}}+2$ , we have to replace $f\left( x \right)$ with y. Then, we have to solve for x. We will ignore the negative value since $x\ge 0$ . Now, we have to replace x with y. Finally, we have to replace y with ${{f}^{-1}}\left( x \right)$ .
Complete step by step answer:
We have to find the inverse of the quadratic function $f\left( x \right)=-{{x}^{2}}+2$ . Firstly, we have to replace $f\left( x \right)$ with y.
$\Rightarrow y=-{{x}^{2}}+2$
Let us solve for x. We have to take 2 to the LHS.
$\Rightarrow y-2=-{{x}^{2}}$
Now, we have to take the negative sign to the LHS.
$\begin{align}
& \Rightarrow -\left( y-2 \right)={{x}^{2}} \\
& \Rightarrow -y+2={{x}^{2}} \\
& \Rightarrow {{x}^{2}}=2-y \\
\end{align}$
Let us take square roots on both sides.
$\begin{align}
& \Rightarrow x=\pm \sqrt{2-y} \\
& \Rightarrow x=\sqrt{2-y},-\sqrt{2-y} \\
\end{align}$
We are given that $x\ge 0$ . Therefore, we will ignore the negative value.
$\Rightarrow x=\sqrt{2-y}$
Now, we have to replace x with y.
$\Rightarrow y=\sqrt{2-x}$
We have to replace y with ${{f}^{-1}}\left( x \right)$ .
$\Rightarrow {{f}^{-1}}\left( x \right)=\sqrt{2-x}$
Therefore, the inverse of $f\left( x \right)=-{{x}^{2}}+2$ is $\sqrt{2-x}$ .
So, the correct answer is “Option d”.
Note: Students must be thorough in solving algebraic equations and the rules involved in it. They should never miss to solve for x in step 2. If so, they have to solve for y in the second last step. After step 1, we will obtain
$\Rightarrow y=-{{x}^{2}}+2$
Then, we have to replace x with y.
$\Rightarrow x=-{{y}^{2}}+2,y\ge 0$
Now, we have to solve for y.
$\begin{align}
& \Rightarrow x-2=-{{y}^{2}} \\
& \Rightarrow -x+2={{y}^{2}} \\
& \Rightarrow {{y}^{2}}=2-x \\
\end{align}$
Let us take square roots on both sides.
$\Rightarrow y=\pm \sqrt{2-x}$
We have to ignore the negative value since $y\ge 0$ .
$\Rightarrow y=\sqrt{2-x}$
We have to replace y with ${{f}^{-1}}\left( x \right)$ .
$\Rightarrow {{f}^{-1}}\left( x \right)=\sqrt{2-x}$
Complete step by step answer:
We have to find the inverse of the quadratic function $f\left( x \right)=-{{x}^{2}}+2$ . Firstly, we have to replace $f\left( x \right)$ with y.
$\Rightarrow y=-{{x}^{2}}+2$
Let us solve for x. We have to take 2 to the LHS.
$\Rightarrow y-2=-{{x}^{2}}$
Now, we have to take the negative sign to the LHS.
$\begin{align}
& \Rightarrow -\left( y-2 \right)={{x}^{2}} \\
& \Rightarrow -y+2={{x}^{2}} \\
& \Rightarrow {{x}^{2}}=2-y \\
\end{align}$
Let us take square roots on both sides.
$\begin{align}
& \Rightarrow x=\pm \sqrt{2-y} \\
& \Rightarrow x=\sqrt{2-y},-\sqrt{2-y} \\
\end{align}$
We are given that $x\ge 0$ . Therefore, we will ignore the negative value.
$\Rightarrow x=\sqrt{2-y}$
Now, we have to replace x with y.
$\Rightarrow y=\sqrt{2-x}$
We have to replace y with ${{f}^{-1}}\left( x \right)$ .
$\Rightarrow {{f}^{-1}}\left( x \right)=\sqrt{2-x}$
Therefore, the inverse of $f\left( x \right)=-{{x}^{2}}+2$ is $\sqrt{2-x}$ .
So, the correct answer is “Option d”.
Note: Students must be thorough in solving algebraic equations and the rules involved in it. They should never miss to solve for x in step 2. If so, they have to solve for y in the second last step. After step 1, we will obtain
$\Rightarrow y=-{{x}^{2}}+2$
Then, we have to replace x with y.
$\Rightarrow x=-{{y}^{2}}+2,y\ge 0$
Now, we have to solve for y.
$\begin{align}
& \Rightarrow x-2=-{{y}^{2}} \\
& \Rightarrow -x+2={{y}^{2}} \\
& \Rightarrow {{y}^{2}}=2-x \\
\end{align}$
Let us take square roots on both sides.
$\Rightarrow y=\pm \sqrt{2-x}$
We have to ignore the negative value since $y\ge 0$ .
$\Rightarrow y=\sqrt{2-x}$
We have to replace y with ${{f}^{-1}}\left( x \right)$ .
$\Rightarrow {{f}^{-1}}\left( x \right)=\sqrt{2-x}$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE