Answer

Verified

390.6k+ views

**Hint:**To find the integral in the given interval of the given trigonometric function is done by integrating the function first and then putting the intervals on the integrated trigonometric functions and subtracting the values of function in the given interval (that is from pi/2 to pi) in the prescribed order. But as we know that cosecant function cannot be integrated directly so we will first convert it into a form which can be integrated easily or is part of a formula and can then proceed with applying the intervals.

**Complete step-by-step solution:**

Cosecant is one of the trigonometric functions. Cosecant and sine functions are inverse of each other. Sine function shows sinusoidal graph whereas cosecant has neither maximum nor minimum.

Integration refers to a process in which an infinitesimal data is used to describe a larger concept like area, volume, etc. And also integration and differentiation are reversed each other. We can understand through the following example.

For example- derivative of \[\sin x\] is \[\dfrac{d}{dx}(\sin x)=\cos x\]

And the integration of \[\cos x\] is \[\int{\cos x=\sin x+C}\] (where C is a constant)

Therefore, they are reverse processes of each other.

According to the question, we have to integrate cosecant function in the given interval, we can re-write the entire question as:

\[\int\limits_{\dfrac{\pi }{2}}^{\pi }{\csc xdx}\]

We will start solving the integral by multiplying and dividing by \[\csc x-\cot x\], we get

\[\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\pi }{\csc x\times \dfrac{\csc x-\cot x}{\csc x-\cot x}dx}\]

\[\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\pi }{\dfrac{{{\csc }^{2}}x-\csc x\cot x}{\csc x-\cot x}dx}\]

Rearranging we get,

\[\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\pi }{\dfrac{-\csc x\cot x+{{\csc }^{2}}x}{\csc x-\cot x}dx}\]

\[\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\pi }{\dfrac{-\csc x\cot xdx+{{\csc }^{2}}xdx}{\csc x-\cot x}}\]

We know that, \[\dfrac{d}{dx}(\csc x)=-\csc x\cot x\] and \[\dfrac{d}{dx}(\cot x)=-{{\csc }^{2}}x\], we will be substituting these in the integral above. On substitution, we get,

\[\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\pi }{\dfrac{d(\csc x)-d(\cot x)}{\csc x-\cot x}}\]

\[\Rightarrow \int\limits_{\dfrac{\pi }{2}}^{\pi }{\dfrac{d(\csc x-\cot x)}{\csc x-\cot x}}\]

So, we can see, the numerator is nothing but the derivative of the denominator and we know the formula that,

\[\int{\dfrac{f'(x)}{f(x)}=\log |f(x)|+c}\]

Applying this formula in the integral we have and then applying the intervals as well, we get,

\[\Rightarrow \left[ \log |\csc x-\cot x| \right]_{\dfrac{\pi }{2}}^{\pi }\]

Applying the intervals, we have,

\[\Rightarrow \log (\csc \pi -\cot \pi )-\log (\csc \dfrac{\pi }{2}-\cot \dfrac{\pi }{2})\]

But we know that \[\csc \pi \] and \[\cot \pi \] have ‘not defined’ values. So, in the given intervals the integral is not defined.

**Therefore, the integral in the given interval is not defined.**

**Note:**Always remember that integration and differentiation are the reverse of each other and this can prove useful in integration questions. While applying formulae, be sure of the conditions under which the formula is applicable only then proceed with the integration.

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

10 examples of friction in our daily life

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

10 examples of law on inertia in our daily life

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths