
Find the integral of \[\cos 2x\].
Answer
578.7k+ views
Hint: Integration is a way of adding slices to find the whole.
Integration can be used to find areas, volumes, central points and many useful things.
But it is easiest to start with finding the area under the curve of a function like this
\[y = f(x)?\]
The symbol for ‘integral’ is \['\int ' \].
For example
\[\int {2x\,dx} \]
After the integral symbol we put the function we want to find the integral of and then finish with dx to mean the slice go in the x direction (and approach zero in width)
\[\int {2x\,dx = {x^2}} + c\]
Where ‘c’ is the ‘constant integration.’
Therefore,
Complete step-by-step answer:
To integrate cos2x, also written as \[\sqrt {\cos 2x\,dx} \] and cos2x we usually use a ’u’ substitution to build a new integration in term of u
\[\begin{gathered}
Let\,u = 2x \\
\dfrac{{du}}{{dx}} = 2 \\
\end{gathered} \]
Then \[\begin{gathered}
du = 2 \\
dx \\
dx = \dfrac{1}{2}du \\
\end{gathered} \]
We arrange to get and expression for ‘dx’ in terms of u
Now,
\[\int {\cos 2x\,dx = \int {\cos u\dfrac{1}{2}} du} \]
We get this by replacing 2x with u and replacing ‘dx’ will \[{Y_2}\]du
\[\int {\cos u\dfrac{1}{2}du} = \dfrac{1}{2}\int {\cos u\,du} \]
We move the \[\dfrac{1}{2}\] outside of the integral as it is simply a multiplier.
\[\int {\operatorname{Cos} u = \operatorname{Sin} u} \]
Now we have a simple integration with \[\operatorname{Sin} \,u\]
\[\dfrac{1}{2}\int {\cos \,u\,du = \dfrac{1}{2}\operatorname{Sin} \,u} \]
We remember the \[\dfrac{1}{2}\] outside the integral sign and reintroduce it here
\[ = \dfrac{1}{2}\operatorname{Sin} 2x + C\]
Hence, this is the final answer where C is the integration constant.
Note: Finding an integral is the reverse of finding a derivative.
In the differential we are given a function and we have to find the derivative or difference of the function, but in the integral, we are to find a function whose differential is given.
Integration can be used to find areas, volumes, central points and many useful things.
But it is easiest to start with finding the area under the curve of a function like this
\[y = f(x)?\]
The symbol for ‘integral’ is \['\int ' \].
For example
\[\int {2x\,dx} \]
After the integral symbol we put the function we want to find the integral of and then finish with dx to mean the slice go in the x direction (and approach zero in width)
\[\int {2x\,dx = {x^2}} + c\]
Where ‘c’ is the ‘constant integration.’
Therefore,
Complete step-by-step answer:
To integrate cos2x, also written as \[\sqrt {\cos 2x\,dx} \] and cos2x we usually use a ’u’ substitution to build a new integration in term of u
\[\begin{gathered}
Let\,u = 2x \\
\dfrac{{du}}{{dx}} = 2 \\
\end{gathered} \]
Then \[\begin{gathered}
du = 2 \\
dx \\
dx = \dfrac{1}{2}du \\
\end{gathered} \]
We arrange to get and expression for ‘dx’ in terms of u
Now,
\[\int {\cos 2x\,dx = \int {\cos u\dfrac{1}{2}} du} \]
We get this by replacing 2x with u and replacing ‘dx’ will \[{Y_2}\]du
\[\int {\cos u\dfrac{1}{2}du} = \dfrac{1}{2}\int {\cos u\,du} \]
We move the \[\dfrac{1}{2}\] outside of the integral as it is simply a multiplier.
\[\int {\operatorname{Cos} u = \operatorname{Sin} u} \]
Now we have a simple integration with \[\operatorname{Sin} \,u\]
\[\dfrac{1}{2}\int {\cos \,u\,du = \dfrac{1}{2}\operatorname{Sin} \,u} \]
We remember the \[\dfrac{1}{2}\] outside the integral sign and reintroduce it here
\[ = \dfrac{1}{2}\operatorname{Sin} 2x + C\]
Hence, this is the final answer where C is the integration constant.
Note: Finding an integral is the reverse of finding a derivative.
In the differential we are given a function and we have to find the derivative or difference of the function, but in the integral, we are to find a function whose differential is given.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

