Answer
Verified
489.6k+ views
Hint: Simplify the expression within the integral sign and use the following results:
$\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$. Also, use the property that integral of the sum = sum of the integrals.
Complete step-by-step answer:
We, first of all, will simplify the integrand
$\begin{align}
& =\sec x(\left( \sec x+\tan x \right) \\
& =\sec x\sec x+\sec x\tan x \\
& ={{\sec }^{2}}x+\sec x\tan x \\
\end{align}$
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\left( {{\sec }^{2}}x+\sec x\tan x \right)dx}$
Since integral of the sum of functions is equal to the sum of integral of the functions, we have
$\int{\sec x\left( \sec x+\tan x \right)dx}=\int{{{\sec }^{2}}xdx}+\int{\sec x\tan xdx}$
We know that $\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$
Using the above formulae, we get
$\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Note: Alternatively, we can solve the above question by writing the integrand in terms of sine and cosine and then integrating.
Using $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we have
$\begin{align}
& \sec x\left( \sec x+\tan x \right) \\
& =\dfrac{1}{\cos x}\dfrac{1+\sin x}{\cos x} \\
& =\dfrac{1+\sin x}{{{\cos }^{2}}x} \\
\end{align}$
We know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
Using the above formula, we get
$\sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{1-{{\sin }^{2}}x}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
\[\begin{align}
& \sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{\left( 1-\sin x \right)\left( 1+\sin x \right)} \\
& \Rightarrow \sec x\left( \sec x+\tan x \right)=\dfrac{1}{1-\sin x} \\
\end{align}\]
Hence \[\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\dfrac{1}{1-\sin x}dx}\]
In integrals of type $\int{\left( \dfrac{dx}{a\sin x+b\cos x} \right)}$ we substitute $t=\tan \dfrac{x}{2}$
So, let $t=\tan \dfrac{x}{2}$
Differentiating both sides, we get
$dt=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx$
We know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$
Using the above formula, we get
\[\begin{align}
& dt=\dfrac{1+{{\tan }^{2}}\dfrac{x}{2}}{2}=\dfrac{1+{{t}^{2}}}{2}dx \\
& \Rightarrow dx=\dfrac{2dt}{1+{{t}^{2}}} \\
\end{align}\]
Also, we know $\sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2t}{1+{{t}^{2}}}$
Hence we have
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{\dfrac{2dt}{1+{{t}^{2}}}}{1-\dfrac{2t}{1+{{t}^{2}}}}} \\
& =\int{\dfrac{2dt}{1+{{t}^{2}}-2t}} \\
\end{align}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Using the above formula, we get
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{2dt}{{{\left( t-1 \right)}^{2}}}=2\int{\dfrac{dt}{{{\left( t-1 \right)}^{2}}}}} \\
& =\dfrac{2}{1-t}+C \\
\end{align}$
Reverting to the original variable, we get
$\int{\sec x\left( \sec x+\tan x \right)}=\dfrac{2}{1-\tan \dfrac{x}{2}}+C$
[2] Although the two results look completely different from each other, by Lagrange mean value theorem, they differ only by a constant.
Hence $\dfrac{2}{1-\tan \dfrac{x}{2}}=\tan x+\sec x+C$ for some constant C.
[3] Proof of [2]: Let F(x) and G(x) be two antiderivatives of the function f(x).
Applying Lagrange mean value theorem to the function F(x) – G(x) in the interval [0,y]{Assuming continuity at 0}, we get
\[\dfrac{F(y)-G(y)-F(0)+G(0)}{y}=f(c)-f(c)=0\]
i.e. $F(y)-G(y)-F(0)+G(0)=0$
Since F(0)-G(0) is a constant let C = F(0) – G(0), we get
$F(y)=G(y)+C$ or in other words F(x) and G(x) differ only by a constant.
$\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$. Also, use the property that integral of the sum = sum of the integrals.
Complete step-by-step answer:
We, first of all, will simplify the integrand
$\begin{align}
& =\sec x(\left( \sec x+\tan x \right) \\
& =\sec x\sec x+\sec x\tan x \\
& ={{\sec }^{2}}x+\sec x\tan x \\
\end{align}$
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\left( {{\sec }^{2}}x+\sec x\tan x \right)dx}$
Since integral of the sum of functions is equal to the sum of integral of the functions, we have
$\int{\sec x\left( \sec x+\tan x \right)dx}=\int{{{\sec }^{2}}xdx}+\int{\sec x\tan xdx}$
We know that $\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$
Using the above formulae, we get
$\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Note: Alternatively, we can solve the above question by writing the integrand in terms of sine and cosine and then integrating.
Using $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we have
$\begin{align}
& \sec x\left( \sec x+\tan x \right) \\
& =\dfrac{1}{\cos x}\dfrac{1+\sin x}{\cos x} \\
& =\dfrac{1+\sin x}{{{\cos }^{2}}x} \\
\end{align}$
We know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
Using the above formula, we get
$\sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{1-{{\sin }^{2}}x}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
\[\begin{align}
& \sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{\left( 1-\sin x \right)\left( 1+\sin x \right)} \\
& \Rightarrow \sec x\left( \sec x+\tan x \right)=\dfrac{1}{1-\sin x} \\
\end{align}\]
Hence \[\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\dfrac{1}{1-\sin x}dx}\]
In integrals of type $\int{\left( \dfrac{dx}{a\sin x+b\cos x} \right)}$ we substitute $t=\tan \dfrac{x}{2}$
So, let $t=\tan \dfrac{x}{2}$
Differentiating both sides, we get
$dt=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx$
We know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$
Using the above formula, we get
\[\begin{align}
& dt=\dfrac{1+{{\tan }^{2}}\dfrac{x}{2}}{2}=\dfrac{1+{{t}^{2}}}{2}dx \\
& \Rightarrow dx=\dfrac{2dt}{1+{{t}^{2}}} \\
\end{align}\]
Also, we know $\sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2t}{1+{{t}^{2}}}$
Hence we have
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{\dfrac{2dt}{1+{{t}^{2}}}}{1-\dfrac{2t}{1+{{t}^{2}}}}} \\
& =\int{\dfrac{2dt}{1+{{t}^{2}}-2t}} \\
\end{align}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Using the above formula, we get
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{2dt}{{{\left( t-1 \right)}^{2}}}=2\int{\dfrac{dt}{{{\left( t-1 \right)}^{2}}}}} \\
& =\dfrac{2}{1-t}+C \\
\end{align}$
Reverting to the original variable, we get
$\int{\sec x\left( \sec x+\tan x \right)}=\dfrac{2}{1-\tan \dfrac{x}{2}}+C$
[2] Although the two results look completely different from each other, by Lagrange mean value theorem, they differ only by a constant.
Hence $\dfrac{2}{1-\tan \dfrac{x}{2}}=\tan x+\sec x+C$ for some constant C.
[3] Proof of [2]: Let F(x) and G(x) be two antiderivatives of the function f(x).
Applying Lagrange mean value theorem to the function F(x) – G(x) in the interval [0,y]{Assuming continuity at 0}, we get
\[\dfrac{F(y)-G(y)-F(0)+G(0)}{y}=f(c)-f(c)=0\]
i.e. $F(y)-G(y)-F(0)+G(0)=0$
Since F(0)-G(0) is a constant let C = F(0) – G(0), we get
$F(y)=G(y)+C$ or in other words F(x) and G(x) differ only by a constant.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE