
Find the integral;
$\int{\sec x\left( \sec x+\tan x \right)dx}$
Answer
605.7k+ views
Hint: Simplify the expression within the integral sign and use the following results:
$\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$. Also, use the property that integral of the sum = sum of the integrals.
Complete step-by-step answer:
We, first of all, will simplify the integrand
$\begin{align}
& =\sec x(\left( \sec x+\tan x \right) \\
& =\sec x\sec x+\sec x\tan x \\
& ={{\sec }^{2}}x+\sec x\tan x \\
\end{align}$
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\left( {{\sec }^{2}}x+\sec x\tan x \right)dx}$
Since integral of the sum of functions is equal to the sum of integral of the functions, we have
$\int{\sec x\left( \sec x+\tan x \right)dx}=\int{{{\sec }^{2}}xdx}+\int{\sec x\tan xdx}$
We know that $\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$
Using the above formulae, we get
$\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Note: Alternatively, we can solve the above question by writing the integrand in terms of sine and cosine and then integrating.
Using $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we have
$\begin{align}
& \sec x\left( \sec x+\tan x \right) \\
& =\dfrac{1}{\cos x}\dfrac{1+\sin x}{\cos x} \\
& =\dfrac{1+\sin x}{{{\cos }^{2}}x} \\
\end{align}$
We know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
Using the above formula, we get
$\sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{1-{{\sin }^{2}}x}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
\[\begin{align}
& \sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{\left( 1-\sin x \right)\left( 1+\sin x \right)} \\
& \Rightarrow \sec x\left( \sec x+\tan x \right)=\dfrac{1}{1-\sin x} \\
\end{align}\]
Hence \[\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\dfrac{1}{1-\sin x}dx}\]
In integrals of type $\int{\left( \dfrac{dx}{a\sin x+b\cos x} \right)}$ we substitute $t=\tan \dfrac{x}{2}$
So, let $t=\tan \dfrac{x}{2}$
Differentiating both sides, we get
$dt=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx$
We know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$
Using the above formula, we get
\[\begin{align}
& dt=\dfrac{1+{{\tan }^{2}}\dfrac{x}{2}}{2}=\dfrac{1+{{t}^{2}}}{2}dx \\
& \Rightarrow dx=\dfrac{2dt}{1+{{t}^{2}}} \\
\end{align}\]
Also, we know $\sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2t}{1+{{t}^{2}}}$
Hence we have
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{\dfrac{2dt}{1+{{t}^{2}}}}{1-\dfrac{2t}{1+{{t}^{2}}}}} \\
& =\int{\dfrac{2dt}{1+{{t}^{2}}-2t}} \\
\end{align}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Using the above formula, we get
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{2dt}{{{\left( t-1 \right)}^{2}}}=2\int{\dfrac{dt}{{{\left( t-1 \right)}^{2}}}}} \\
& =\dfrac{2}{1-t}+C \\
\end{align}$
Reverting to the original variable, we get
$\int{\sec x\left( \sec x+\tan x \right)}=\dfrac{2}{1-\tan \dfrac{x}{2}}+C$
[2] Although the two results look completely different from each other, by Lagrange mean value theorem, they differ only by a constant.
Hence $\dfrac{2}{1-\tan \dfrac{x}{2}}=\tan x+\sec x+C$ for some constant C.
[3] Proof of [2]: Let F(x) and G(x) be two antiderivatives of the function f(x).
Applying Lagrange mean value theorem to the function F(x) – G(x) in the interval [0,y]{Assuming continuity at 0}, we get
\[\dfrac{F(y)-G(y)-F(0)+G(0)}{y}=f(c)-f(c)=0\]
i.e. $F(y)-G(y)-F(0)+G(0)=0$
Since F(0)-G(0) is a constant let C = F(0) – G(0), we get
$F(y)=G(y)+C$ or in other words F(x) and G(x) differ only by a constant.
$\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$. Also, use the property that integral of the sum = sum of the integrals.
Complete step-by-step answer:
We, first of all, will simplify the integrand
$\begin{align}
& =\sec x(\left( \sec x+\tan x \right) \\
& =\sec x\sec x+\sec x\tan x \\
& ={{\sec }^{2}}x+\sec x\tan x \\
\end{align}$
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\left( {{\sec }^{2}}x+\sec x\tan x \right)dx}$
Since integral of the sum of functions is equal to the sum of integral of the functions, we have
$\int{\sec x\left( \sec x+\tan x \right)dx}=\int{{{\sec }^{2}}xdx}+\int{\sec x\tan xdx}$
We know that $\int{{{\sec }^{2}}xdx}=\tan x+C$ and $\int{\sec x\tan xdx}=\sec x+C$
Using the above formulae, we get
$\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Hence $\int{\sec x\left( \sec x+\tan x \right)dx}=\tan x+\sec x+C$.
Note: Alternatively, we can solve the above question by writing the integrand in terms of sine and cosine and then integrating.
Using $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we have
$\begin{align}
& \sec x\left( \sec x+\tan x \right) \\
& =\dfrac{1}{\cos x}\dfrac{1+\sin x}{\cos x} \\
& =\dfrac{1+\sin x}{{{\cos }^{2}}x} \\
\end{align}$
We know that ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
Using the above formula, we get
$\sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{1-{{\sin }^{2}}x}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
\[\begin{align}
& \sec x\left( \sec x+\tan x \right)=\dfrac{1+\sin x}{\left( 1-\sin x \right)\left( 1+\sin x \right)} \\
& \Rightarrow \sec x\left( \sec x+\tan x \right)=\dfrac{1}{1-\sin x} \\
\end{align}\]
Hence \[\int{\sec x\left( \sec x+\tan x \right)dx}=\int{\dfrac{1}{1-\sin x}dx}\]
In integrals of type $\int{\left( \dfrac{dx}{a\sin x+b\cos x} \right)}$ we substitute $t=\tan \dfrac{x}{2}$
So, let $t=\tan \dfrac{x}{2}$
Differentiating both sides, we get
$dt=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx$
We know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$
Using the above formula, we get
\[\begin{align}
& dt=\dfrac{1+{{\tan }^{2}}\dfrac{x}{2}}{2}=\dfrac{1+{{t}^{2}}}{2}dx \\
& \Rightarrow dx=\dfrac{2dt}{1+{{t}^{2}}} \\
\end{align}\]
Also, we know $\sin x=\dfrac{2\tan \dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}}=\dfrac{2t}{1+{{t}^{2}}}$
Hence we have
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{\dfrac{2dt}{1+{{t}^{2}}}}{1-\dfrac{2t}{1+{{t}^{2}}}}} \\
& =\int{\dfrac{2dt}{1+{{t}^{2}}-2t}} \\
\end{align}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Using the above formula, we get
$\begin{align}
& \int{\sec x\left( \sec x+\tan x \right)}=\int{\dfrac{2dt}{{{\left( t-1 \right)}^{2}}}=2\int{\dfrac{dt}{{{\left( t-1 \right)}^{2}}}}} \\
& =\dfrac{2}{1-t}+C \\
\end{align}$
Reverting to the original variable, we get
$\int{\sec x\left( \sec x+\tan x \right)}=\dfrac{2}{1-\tan \dfrac{x}{2}}+C$
[2] Although the two results look completely different from each other, by Lagrange mean value theorem, they differ only by a constant.
Hence $\dfrac{2}{1-\tan \dfrac{x}{2}}=\tan x+\sec x+C$ for some constant C.
[3] Proof of [2]: Let F(x) and G(x) be two antiderivatives of the function f(x).
Applying Lagrange mean value theorem to the function F(x) – G(x) in the interval [0,y]{Assuming continuity at 0}, we get
\[\dfrac{F(y)-G(y)-F(0)+G(0)}{y}=f(c)-f(c)=0\]
i.e. $F(y)-G(y)-F(0)+G(0)=0$
Since F(0)-G(0) is a constant let C = F(0) – G(0), we get
$F(y)=G(y)+C$ or in other words F(x) and G(x) differ only by a constant.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

