
Find the integral $\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $?
Answer
233.1k+ views
Hint: Before solving the question regenerate the limits because $\left| x \right|$ differs when $x \ge 0$ and $x < 0$.
Complete step by step solution:
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
Splitting the Mod.
$\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{x,x \ge 0}\\{ - x,x < 0}\end{array}} \right.$
Now For $\left| {x - 1} \right|$ ,
$\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {x - 1} \right),x - 1 \ge 0}\\{ - \left( {x - 1} \right),x - 1 < 0}\\{1 - x,x < 1}\end{array}} \right.$
By using the above breaking of the Mod we will be changing the Limits for the integration,
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
$ = \int\limits_0^1 {\left| {1 - x - x} \right|dx + \int\limits_1^2 {\left| {x - 1 - x} \right|dx} } $
$ = \int\limits_0^1 {\left| {1 - 2x} \right|dx + \int\limits_1^2 {1.dx} } $
As, $\left| {1 - 2x} \right|$ is again a modulus function , Hence we will be breaking the mod for $\left| {1 - 2x} \right|$.
Which will be –
$\left| {1 - 2x} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {1 - 2x} \right),1 - 2x \ge 0}\\{ - \left( {1 - 2x} \right),x > \dfrac{1}{2}}\\{2x - 1}\end{array}} \right.$
Solving Further after breaking the mod $\left| {1 - 2x} \right|$
$\int\limits_0^{\frac{1}{2}} {1 - 2xdx + \int\limits_{\dfrac{1}{2}}^1 {2x - 1dx} } + {\left[ x \right]_1}^2$
$ = {\left[ x \right]_0}^{\frac{1}{2}} - 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_0}^{\frac{1}{2}} + 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_{\dfrac{1}{2}}}^1 - {\left[ x \right]_{\dfrac{1}{2}}}^1 + {\left[ x \right]^2}_1$
Now , Putting the limits.
$ = \dfrac{1}{2} - \dfrac{1}{4} + 1 - \dfrac{1}{4} - \dfrac{1}{2} + 1$
$ = 2 - \dfrac{1}{2}$
$ = \dfrac{3}{2}$
Hence the answer is $\dfrac{3}{2}$
Note: For such types of problems always split the modulus function and be very careful while changing the limits. If applying or changing limits is problematic for you, you can solve the integral up until the point when you need to replace the variable back in and use the existing limits.
Complete step by step solution:
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
Splitting the Mod.
$\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{x,x \ge 0}\\{ - x,x < 0}\end{array}} \right.$
Now For $\left| {x - 1} \right|$ ,
$\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {x - 1} \right),x - 1 \ge 0}\\{ - \left( {x - 1} \right),x - 1 < 0}\\{1 - x,x < 1}\end{array}} \right.$
By using the above breaking of the Mod we will be changing the Limits for the integration,
$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $
$ = \int\limits_0^1 {\left| {1 - x - x} \right|dx + \int\limits_1^2 {\left| {x - 1 - x} \right|dx} } $
$ = \int\limits_0^1 {\left| {1 - 2x} \right|dx + \int\limits_1^2 {1.dx} } $
As, $\left| {1 - 2x} \right|$ is again a modulus function , Hence we will be breaking the mod for $\left| {1 - 2x} \right|$.
Which will be –
$\left| {1 - 2x} \right| = \left\{ {\begin{array}{*{20}{c}}{\left( {1 - 2x} \right),1 - 2x \ge 0}\\{ - \left( {1 - 2x} \right),x > \dfrac{1}{2}}\\{2x - 1}\end{array}} \right.$
Solving Further after breaking the mod $\left| {1 - 2x} \right|$
$\int\limits_0^{\frac{1}{2}} {1 - 2xdx + \int\limits_{\dfrac{1}{2}}^1 {2x - 1dx} } + {\left[ x \right]_1}^2$
$ = {\left[ x \right]_0}^{\frac{1}{2}} - 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_0}^{\frac{1}{2}} + 2{\left[ {\dfrac{{{x^2}}}{2}} \right]_{\dfrac{1}{2}}}^1 - {\left[ x \right]_{\dfrac{1}{2}}}^1 + {\left[ x \right]^2}_1$
Now , Putting the limits.
$ = \dfrac{1}{2} - \dfrac{1}{4} + 1 - \dfrac{1}{4} - \dfrac{1}{2} + 1$
$ = 2 - \dfrac{1}{2}$
$ = \dfrac{3}{2}$
Hence the answer is $\dfrac{3}{2}$
Note: For such types of problems always split the modulus function and be very careful while changing the limits. If applying or changing limits is problematic for you, you can solve the integral up until the point when you need to replace the variable back in and use the existing limits.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

