Answer
Verified
457.5k+ views
Hint:Start with trying to take common ${x^5}$from the denominator term$\left( {{x^5} + {x^3} + 1} \right)$. This will give you ${x^{15}}$in the denominator and then you can divide the numerator with${x^{15}}$. This will give you an expression$\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)$ on which you can integrate by using a substitution method.
Complete step-by-step answer:
According to the substitution rule in integration\[\int {f(g(x))g\prime (x)dx} = \int {f(u)du} ,where,u = g(x)\]
The substitution method is used when an integral contains some function and its derivative. In this case, we can set $m$ equal to the function and rewrite the integral in terms of the new variable $m$. This makes the integral easier to solve.
And we have our integral of the form $\int {\dfrac{{P\left( x \right)}}{{Q\left( x \right)}}} dx$, where we can check for derivative of the function $Q\left( x \right)$
$ \Rightarrow \dfrac{{d\left( {{{\left( {{x^5} + {x^3} + 1} \right)}^3}} \right)}}{{dx}} = 3\left( {5{x^4} + 3{x^2}} \right)$ ; which will not help us in any way to make it easier.
Let’s take out the common from the part $\left( {{x^5} + {x^3} + 1} \right)$, we can write it as:
\[ \Rightarrow \int {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} dx = \int {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5}\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)} \right)}^3}}}} dx = \int {\dfrac{{2{x^{12}} + 5{x^9}}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} dx\]
Now, we can divide our numerator with ${x^{15}}$, this will give us:
\[ \Rightarrow \int {\dfrac{{2{x^{12}} + 5{x^9}}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} dx = \int {\dfrac{{2{x^{12 - 15}} + 5{x^{9 - 15}}}}{{{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} dx = \int {\dfrac{{2{x^{ - 3}} + 5{x^{ - 6}}}}{{{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} dx\]
And we still have our integral of the form$\int {\dfrac{{P\left( x \right)}}{{Q\left( x \right)}}} dx$, where we can check for derivative of the function $Q\left( x \right)$
$ \Rightarrow \dfrac{{d\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}}{{dx}} = 0 + \left( { - 2{x^{ - 2 - 1}}} \right) + \left( { - 5{x^{ - 5 - 1}}} \right) = - 2{x^{ - 3}} - 5{x^{ - 6}} = - P\left( x \right)$
Therefore, we can now apply the substitution method in our integral:
$ \Rightarrow \left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right) = m \Rightarrow d\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right) = dm \Rightarrow dm = - 2{x^{ - 3}} - 5{x^{ - 6}}$
Let’s put this value in our integral:
\[ \Rightarrow \int {\dfrac{{2{x^{ - 3}} + 5{x^{ - 6}}}}{{{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} dx = \int {\dfrac{{ - dm}}{{{m^3}}}} \]
As we know that,$\int {{x^a}} dx = \dfrac{{{x^{a + 1}}}}{{a + 1}} + C$, which can be used in our integral
$ \Rightarrow \int {\dfrac{{ - dm}}{{{m^3}}}} = - \dfrac{{{m^{ - 3 + 1}}}}{{\left( { - 3 + 1} \right)}} + C = - \dfrac{{{m^{ - 2}}}}{{ - 2}} + C = \dfrac{1}{{2{m^2}}} + C$
Now, we can again substitute the value of $m$ into the expression as:
$ \Rightarrow \dfrac{1}{{2{m^2}}} + C = \dfrac{1}{{2{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^2}}} + C$
This can be further simplified as:
$ \Rightarrow \dfrac{1}{{2{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^2}}} + C = \dfrac{1}{{2{{\left( {{x^{ - 5}}\left( {{x^5} + {x^3} + 1} \right)} \right)}^2}}} + C = \dfrac{1}{{2{x^{ - 10}}{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C = \dfrac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$
Thus we got the integral as: $\int {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} dx = \dfrac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$
So, the correct answer is “Option B”.
Note:Try to go step by step with the solution to avoid the complications. Be careful with the substitution in the integral. Always take care of the signs after substitutions. Here we used $\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right) = m$. Notice that the integral on the left is expressed in terms of the variable$x$. The integral on the right is in terms of$m$.Do not forget to express the final answer in terms of the original variable$x$.
Complete step-by-step answer:
According to the substitution rule in integration\[\int {f(g(x))g\prime (x)dx} = \int {f(u)du} ,where,u = g(x)\]
The substitution method is used when an integral contains some function and its derivative. In this case, we can set $m$ equal to the function and rewrite the integral in terms of the new variable $m$. This makes the integral easier to solve.
And we have our integral of the form $\int {\dfrac{{P\left( x \right)}}{{Q\left( x \right)}}} dx$, where we can check for derivative of the function $Q\left( x \right)$
$ \Rightarrow \dfrac{{d\left( {{{\left( {{x^5} + {x^3} + 1} \right)}^3}} \right)}}{{dx}} = 3\left( {5{x^4} + 3{x^2}} \right)$ ; which will not help us in any way to make it easier.
Let’s take out the common from the part $\left( {{x^5} + {x^3} + 1} \right)$, we can write it as:
\[ \Rightarrow \int {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} dx = \int {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5}\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)} \right)}^3}}}} dx = \int {\dfrac{{2{x^{12}} + 5{x^9}}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} dx\]
Now, we can divide our numerator with ${x^{15}}$, this will give us:
\[ \Rightarrow \int {\dfrac{{2{x^{12}} + 5{x^9}}}{{{x^{15}}{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} dx = \int {\dfrac{{2{x^{12 - 15}} + 5{x^{9 - 15}}}}{{{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} dx = \int {\dfrac{{2{x^{ - 3}} + 5{x^{ - 6}}}}{{{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} dx\]
And we still have our integral of the form$\int {\dfrac{{P\left( x \right)}}{{Q\left( x \right)}}} dx$, where we can check for derivative of the function $Q\left( x \right)$
$ \Rightarrow \dfrac{{d\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}}{{dx}} = 0 + \left( { - 2{x^{ - 2 - 1}}} \right) + \left( { - 5{x^{ - 5 - 1}}} \right) = - 2{x^{ - 3}} - 5{x^{ - 6}} = - P\left( x \right)$
Therefore, we can now apply the substitution method in our integral:
$ \Rightarrow \left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right) = m \Rightarrow d\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right) = dm \Rightarrow dm = - 2{x^{ - 3}} - 5{x^{ - 6}}$
Let’s put this value in our integral:
\[ \Rightarrow \int {\dfrac{{2{x^{ - 3}} + 5{x^{ - 6}}}}{{{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^3}}}} dx = \int {\dfrac{{ - dm}}{{{m^3}}}} \]
As we know that,$\int {{x^a}} dx = \dfrac{{{x^{a + 1}}}}{{a + 1}} + C$, which can be used in our integral
$ \Rightarrow \int {\dfrac{{ - dm}}{{{m^3}}}} = - \dfrac{{{m^{ - 3 + 1}}}}{{\left( { - 3 + 1} \right)}} + C = - \dfrac{{{m^{ - 2}}}}{{ - 2}} + C = \dfrac{1}{{2{m^2}}} + C$
Now, we can again substitute the value of $m$ into the expression as:
$ \Rightarrow \dfrac{1}{{2{m^2}}} + C = \dfrac{1}{{2{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^2}}} + C$
This can be further simplified as:
$ \Rightarrow \dfrac{1}{{2{{\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right)}^2}}} + C = \dfrac{1}{{2{{\left( {{x^{ - 5}}\left( {{x^5} + {x^3} + 1} \right)} \right)}^2}}} + C = \dfrac{1}{{2{x^{ - 10}}{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C = \dfrac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$
Thus we got the integral as: $\int {\dfrac{{2{x^{12}} + 5{x^9}}}{{{{\left( {{x^5} + {x^3} + 1} \right)}^3}}}} dx = \dfrac{{{x^{10}}}}{{2{{\left( {{x^5} + {x^3} + 1} \right)}^2}}} + C$
So, the correct answer is “Option B”.
Note:Try to go step by step with the solution to avoid the complications. Be careful with the substitution in the integral. Always take care of the signs after substitutions. Here we used $\left( {1 + {x^{ - 2}} + {x^{ - 5}}} \right) = m$. Notice that the integral on the left is expressed in terms of the variable$x$. The integral on the right is in terms of$m$.Do not forget to express the final answer in terms of the original variable$x$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE