Answer

Verified

449.1k+ views

Hint: So we have to find the expansion of ${{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}}$ using binomial theorem. Take a value $a$ and $b$ from ${{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}}$. Use binomial theorem. You will get the answer.

Complete step-by-step answer:

According to the binomial theorem, the ${{(r+1)}^{th}}$ term in the expansion of ${{(a+b)}^{n}}$ is,

\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]

The above term is a general term or ${{(r+1)}^{th}}$ term. The total number of terms in the binomial expansion ${{(a+b)}^{n}}$is$(n+1)$, i.e. one more than the exponent $n$.

Binomial theorem states that for any positive integer $n$, the $n$ power of the sum of two numbers a and b may be expressed as the sum of $(n+1)$ terms of the form.

The final expression follows from the previous one by the symmetry of $a$ and $b$ in the first expression, and by comparison, it follows that the sequence of binomial coefficients in the formula is symmetrical.

A simple variant of the binomial formula is obtained by substituting $1$ for $b$ so that it involves only a single variable.

In the Binomial expression, we have

\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]

So the coefficients ${}^{n}{{C}_{0}},{}^{n}{{C}_{1}},............,{}^{n}{{C}_{n}}$ are known as binomial or combinatorial coefficients.

You can see them ${}^{n}{{C}_{r}}$ being used here which is the binomial coefficient. The sum of the binomial coefficients will be ${{2}^{n}}$ because, we know that,

$\sum\nolimits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right)}={{2}^{n}}$

Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to ${{2}^{n-1}}$.

The middle term depends upon the value of $n$,

It $n$ is even: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (odd).

It $n$ is odd: then the total number of terms in the expansion of ${{(a+b)}^{n}}$ is $n+1$ (even).

It $n$is a positive integer,

\[{{(a-b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}-{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]

For binomial expansion first, let's do a small pairing inside the bracket.

So now let$a=3{{x}^{2}}$and$b=a(2x-3a)$.

Now let's expand this as is normally done for two-digit expansion.

${{\left[ 3{{x}^{2}}-a(2x-3a) \right]}^{3}}={{(3{{x}^{2}})}^{3}}-3{{(3{{x}^{2}})}^{2}}\times a(2x-3a)+3(3{{x}^{2}})\times {{a}^{2}}{{(2x-3a)}^{2}}-{{a}^{3}}{{(2x-3a)}^{3}}$

So simplifying in a simple manner we get,

$\begin{align}

& {{\left[ 3{{x}^{2}}-a(2x-3a) \right]}^{3}}=27{{x}^{6}}-3(9{{x}^{4}})(2ax-3{{a}^{2}})+9{{a}^{2}}{{x}^{2}}(4{{x}^{2}}+9{{a}^{2}}-12ax)-{{a}^{3}}(8{{x}^{3}}-27{{a}^{3}}-3.4{{x}^{2}}.3a+3.9{{a}^{2}}.2x) \\

& =27{{x}^{6}}-27{{x}^{4}}(2ax-3{{a}^{2}})+36{{a}^{2}}{{x}^{4}}+81{{a}^{4}}{{x}^{2}}-108{{a}^{3}}{{x}^{3}}-8{{a}^{3}}{{x}^{3}}+27{{a}^{6}}+36{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x \\

& =27{{x}^{6}}-54a{{x}^{5}}+81{{a}^{2}}{{x}^{4}}+36{{a}^{2}}{{x}^{4}}+117{{a}^{4}}{{x}^{2}}-116{{a}^{3}}{{x}^{3}}+27{{a}^{6}}-54{{a}^{5}}x \\

& =27{{x}^{6}}-54a{{x}^{5}}+117{{a}^{2}}{{x}^{4}}-116{{a}^{3}}{{x}^{3}}+117{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x+27{{a}^{6}} \\

\end{align}$

The Expansion ${{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}}$is$27{{x}^{6}}-54{{x}^{5}}a+117{{a}^{2}}{{x}^{4}}-116{{a}^{3}}{{x}^{ e3}}+117{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x+27{{a}^{6}}$.

Note: Read the question in a careful manner. Don’t jumble within the concepts. You should know what to select as$a$ and $b$. We had assumed $a=3{{x}^{2}}$ and $b=a(2x-3a)$. So you can assume it in your way. But keep in mind there should not be any confusion.

Complete step-by-step answer:

According to the binomial theorem, the ${{(r+1)}^{th}}$ term in the expansion of ${{(a+b)}^{n}}$ is,

\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]

The above term is a general term or ${{(r+1)}^{th}}$ term. The total number of terms in the binomial expansion ${{(a+b)}^{n}}$is$(n+1)$, i.e. one more than the exponent $n$.

Binomial theorem states that for any positive integer $n$, the $n$ power of the sum of two numbers a and b may be expressed as the sum of $(n+1)$ terms of the form.

The final expression follows from the previous one by the symmetry of $a$ and $b$ in the first expression, and by comparison, it follows that the sequence of binomial coefficients in the formula is symmetrical.

A simple variant of the binomial formula is obtained by substituting $1$ for $b$ so that it involves only a single variable.

In the Binomial expression, we have

\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]

So the coefficients ${}^{n}{{C}_{0}},{}^{n}{{C}_{1}},............,{}^{n}{{C}_{n}}$ are known as binomial or combinatorial coefficients.

You can see them ${}^{n}{{C}_{r}}$ being used here which is the binomial coefficient. The sum of the binomial coefficients will be ${{2}^{n}}$ because, we know that,

$\sum\nolimits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right)}={{2}^{n}}$

Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to ${{2}^{n-1}}$.

The middle term depends upon the value of $n$,

It $n$ is even: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (odd).

It $n$ is odd: then the total number of terms in the expansion of ${{(a+b)}^{n}}$ is $n+1$ (even).

It $n$is a positive integer,

\[{{(a-b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}-{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]

For binomial expansion first, let's do a small pairing inside the bracket.

So now let$a=3{{x}^{2}}$and$b=a(2x-3a)$.

Now let's expand this as is normally done for two-digit expansion.

${{\left[ 3{{x}^{2}}-a(2x-3a) \right]}^{3}}={{(3{{x}^{2}})}^{3}}-3{{(3{{x}^{2}})}^{2}}\times a(2x-3a)+3(3{{x}^{2}})\times {{a}^{2}}{{(2x-3a)}^{2}}-{{a}^{3}}{{(2x-3a)}^{3}}$

So simplifying in a simple manner we get,

$\begin{align}

& {{\left[ 3{{x}^{2}}-a(2x-3a) \right]}^{3}}=27{{x}^{6}}-3(9{{x}^{4}})(2ax-3{{a}^{2}})+9{{a}^{2}}{{x}^{2}}(4{{x}^{2}}+9{{a}^{2}}-12ax)-{{a}^{3}}(8{{x}^{3}}-27{{a}^{3}}-3.4{{x}^{2}}.3a+3.9{{a}^{2}}.2x) \\

& =27{{x}^{6}}-27{{x}^{4}}(2ax-3{{a}^{2}})+36{{a}^{2}}{{x}^{4}}+81{{a}^{4}}{{x}^{2}}-108{{a}^{3}}{{x}^{3}}-8{{a}^{3}}{{x}^{3}}+27{{a}^{6}}+36{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x \\

& =27{{x}^{6}}-54a{{x}^{5}}+81{{a}^{2}}{{x}^{4}}+36{{a}^{2}}{{x}^{4}}+117{{a}^{4}}{{x}^{2}}-116{{a}^{3}}{{x}^{3}}+27{{a}^{6}}-54{{a}^{5}}x \\

& =27{{x}^{6}}-54a{{x}^{5}}+117{{a}^{2}}{{x}^{4}}-116{{a}^{3}}{{x}^{3}}+117{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x+27{{a}^{6}} \\

\end{align}$

The Expansion ${{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}}$is$27{{x}^{6}}-54{{x}^{5}}a+117{{a}^{2}}{{x}^{4}}-116{{a}^{3}}{{x}^{ e3}}+117{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x+27{{a}^{6}}$.

Note: Read the question in a careful manner. Don’t jumble within the concepts. You should know what to select as$a$ and $b$. We had assumed $a=3{{x}^{2}}$ and $b=a(2x-3a)$. So you can assume it in your way. But keep in mind there should not be any confusion.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE