Answer

Verified

449.4k+ views

Hint: Take the equation of plane as \[a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\] where \[a\widehat{i}+b\widehat{j}+c\widehat{k}\] is the normal vector to the plane and \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] is the point through which it passes. Since both planes are perpendicular, the dot produced of the normal vectors of both of them would be zero. Use this approach to find the equation of the plane.

Complete step-by-step answer:

Here we are given a plane passing through the points whose coordinates are (-1, 1, 1) and(1, -1, 1) and perpendicular to the plane x + 2y + 2z = 5.

We have to find the equation of this plane. We know that for any plane ax + by + cx = d, \[a\widehat{i}+b\widehat{j}+c\widehat{k}\] is its normal vector.

Therefore, for the given plane x + 2y + 2z = 5, by comparing it to ax + by + cz = d, we get \[\widehat{i}+2\widehat{j}+2\widehat{k}\] as its normal vector.

Let us consider the normal vector of this plane as

\[\overrightarrow{P}=\widehat{i}+2\widehat{j}+2\widehat{k}....\left( i \right)\]

We know that if any plane P passes through the point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and the vector normal to it is \[a\widehat{i}+b\widehat{j}+c\widehat{k}\], then its equation is given by,

\[P:a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\]

As we are given that plane to be focused passes through (-1, 1, 1) and the vector normal to it is \[a\widehat{i}+b\widehat{j}+c\widehat{k}\] .

Then we get the equation of the plane as

\[P:a\left[ x-\left( -1 \right) \right]+b\left( y-1 \right)+c\left( z-1 \right)=0.....\left( i \right)\]

As we are given that this plane also passes through the point (1, -1, 1), therefore by substituting the value of x, y and z in the above equation, we get,

\[a\left[ 1-\left( -1 \right) \right]+b\left( -1-1 \right)+c\left( 1-1 \right)=0\]

By simplifying the above equation, we get,

\[\Rightarrow a\left( 2 \right)+b\left( -2 \right)=0\]

Or, \[2a-2b=0\]

Therefore, we get a = b

We know that both planes are perpendicular to each other, so the vectors normal to both of them would also be perpendicular.

We also know that, when two vectors are perpendicular to each other, their dot product is 0. Therefore, we get

(Normal vector of 1st plane) . (Normal Vector of 2nd plane) = 0

\[\left( \widehat{i}+2\widehat{j}+2\widehat{k} \right).\left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right)=0\]

As we know that

\[\left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right).\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right)=ax+by+cz\]

Therefore, we get,

\[\left( 1.a \right)+\left( 2.b \right)+\left( 2.c \right)=0\]

Since, we have found that a = b, therefore by substituting b = a in the above equation, we get

\[\begin{align}

& a+2a+2c=0 \\

& \Rightarrow 2c+3a=0 \\

& \Rightarrow 2c=-3a \\

\end{align}\]

Therefore, we get \[c=\dfrac{-3a}{2}\]

As we have found that a = a, b = a and \[c=\dfrac{-3a}{2}\], therefore by substituting the values of a, b and c in equation (i) in terms of a, we get,

\[P:a\left( x+1 \right)+a\left( y-1 \right)+\left( \dfrac{-3a}{2} \right)\left( z-1 \right)=0\]

By simplifying the equation and taking ‘a’ common, we get,

\[P:a\left[ \left( x+1 \right)+\left( y-1 \right)-\dfrac{-3}{2}\left( z-1 \right) \right]=0\]

\[P:a\left[ \dfrac{2\left( x+1 \right)+2\left( y-1 \right)-3\left( z-1 \right)}{2} \right]=0\]

By multiplying by \[\dfrac{2}{a}\] on both sides and simplifying the equation, we get,

\[P:\left( 2x+2+2y-2-3z+3 \right)=0\]

Or, \[P:2x+2y-3z+3=0\]

Hence, we get the equation of plane as 2x + 2y – 3z + 3 = 0.

Note: Students must note that to find the equation of a plane, absolute values of a, b and c are not required but we must know their ratios like in the above solution, we have \[a:b:c\] as \[1:1:\dfrac{-3}{2}\]. Also, students can cross-check their equation of plane by satisfying points (-1, 1, 1) and (1, -1, 1) in it.

Complete step-by-step answer:

Here we are given a plane passing through the points whose coordinates are (-1, 1, 1) and(1, -1, 1) and perpendicular to the plane x + 2y + 2z = 5.

We have to find the equation of this plane. We know that for any plane ax + by + cx = d, \[a\widehat{i}+b\widehat{j}+c\widehat{k}\] is its normal vector.

Therefore, for the given plane x + 2y + 2z = 5, by comparing it to ax + by + cz = d, we get \[\widehat{i}+2\widehat{j}+2\widehat{k}\] as its normal vector.

Let us consider the normal vector of this plane as

\[\overrightarrow{P}=\widehat{i}+2\widehat{j}+2\widehat{k}....\left( i \right)\]

We know that if any plane P passes through the point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and the vector normal to it is \[a\widehat{i}+b\widehat{j}+c\widehat{k}\], then its equation is given by,

\[P:a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\]

As we are given that plane to be focused passes through (-1, 1, 1) and the vector normal to it is \[a\widehat{i}+b\widehat{j}+c\widehat{k}\] .

Then we get the equation of the plane as

\[P:a\left[ x-\left( -1 \right) \right]+b\left( y-1 \right)+c\left( z-1 \right)=0.....\left( i \right)\]

As we are given that this plane also passes through the point (1, -1, 1), therefore by substituting the value of x, y and z in the above equation, we get,

\[a\left[ 1-\left( -1 \right) \right]+b\left( -1-1 \right)+c\left( 1-1 \right)=0\]

By simplifying the above equation, we get,

\[\Rightarrow a\left( 2 \right)+b\left( -2 \right)=0\]

Or, \[2a-2b=0\]

Therefore, we get a = b

We know that both planes are perpendicular to each other, so the vectors normal to both of them would also be perpendicular.

We also know that, when two vectors are perpendicular to each other, their dot product is 0. Therefore, we get

(Normal vector of 1st plane) . (Normal Vector of 2nd plane) = 0

\[\left( \widehat{i}+2\widehat{j}+2\widehat{k} \right).\left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right)=0\]

As we know that

\[\left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right).\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right)=ax+by+cz\]

Therefore, we get,

\[\left( 1.a \right)+\left( 2.b \right)+\left( 2.c \right)=0\]

Since, we have found that a = b, therefore by substituting b = a in the above equation, we get

\[\begin{align}

& a+2a+2c=0 \\

& \Rightarrow 2c+3a=0 \\

& \Rightarrow 2c=-3a \\

\end{align}\]

Therefore, we get \[c=\dfrac{-3a}{2}\]

As we have found that a = a, b = a and \[c=\dfrac{-3a}{2}\], therefore by substituting the values of a, b and c in equation (i) in terms of a, we get,

\[P:a\left( x+1 \right)+a\left( y-1 \right)+\left( \dfrac{-3a}{2} \right)\left( z-1 \right)=0\]

By simplifying the equation and taking ‘a’ common, we get,

\[P:a\left[ \left( x+1 \right)+\left( y-1 \right)-\dfrac{-3}{2}\left( z-1 \right) \right]=0\]

\[P:a\left[ \dfrac{2\left( x+1 \right)+2\left( y-1 \right)-3\left( z-1 \right)}{2} \right]=0\]

By multiplying by \[\dfrac{2}{a}\] on both sides and simplifying the equation, we get,

\[P:\left( 2x+2+2y-2-3z+3 \right)=0\]

Or, \[P:2x+2y-3z+3=0\]

Hence, we get the equation of plane as 2x + 2y – 3z + 3 = 0.

Note: Students must note that to find the equation of a plane, absolute values of a, b and c are not required but we must know their ratios like in the above solution, we have \[a:b:c\] as \[1:1:\dfrac{-3}{2}\]. Also, students can cross-check their equation of plane by satisfying points (-1, 1, 1) and (1, -1, 1) in it.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How many crores make 10 million class 7 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths