Find the equation of the plane passing through the points whose coordinates are (-1, 1, 1) and (1, -1, 1) and perpendicular to the plane x + 2y + 2z = 5
Last updated date: 17th Mar 2023
•
Total views: 305.7k
•
Views today: 6.84k
Answer
305.7k+ views
Hint: Take the equation of plane as \[a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\] where \[a\widehat{i}+b\widehat{j}+c\widehat{k}\] is the normal vector to the plane and \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] is the point through which it passes. Since both planes are perpendicular, the dot produced of the normal vectors of both of them would be zero. Use this approach to find the equation of the plane.
Complete step-by-step answer:
Here we are given a plane passing through the points whose coordinates are (-1, 1, 1) and(1, -1, 1) and perpendicular to the plane x + 2y + 2z = 5.
We have to find the equation of this plane. We know that for any plane ax + by + cx = d, \[a\widehat{i}+b\widehat{j}+c\widehat{k}\] is its normal vector.
Therefore, for the given plane x + 2y + 2z = 5, by comparing it to ax + by + cz = d, we get \[\widehat{i}+2\widehat{j}+2\widehat{k}\] as its normal vector.
Let us consider the normal vector of this plane as
\[\overrightarrow{P}=\widehat{i}+2\widehat{j}+2\widehat{k}....\left( i \right)\]
We know that if any plane P passes through the point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and the vector normal to it is \[a\widehat{i}+b\widehat{j}+c\widehat{k}\], then its equation is given by,
\[P:a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\]
As we are given that plane to be focused passes through (-1, 1, 1) and the vector normal to it is \[a\widehat{i}+b\widehat{j}+c\widehat{k}\] .
Then we get the equation of the plane as
\[P:a\left[ x-\left( -1 \right) \right]+b\left( y-1 \right)+c\left( z-1 \right)=0.....\left( i \right)\]
As we are given that this plane also passes through the point (1, -1, 1), therefore by substituting the value of x, y and z in the above equation, we get,
\[a\left[ 1-\left( -1 \right) \right]+b\left( -1-1 \right)+c\left( 1-1 \right)=0\]
By simplifying the above equation, we get,
\[\Rightarrow a\left( 2 \right)+b\left( -2 \right)=0\]
Or, \[2a-2b=0\]
Therefore, we get a = b
We know that both planes are perpendicular to each other, so the vectors normal to both of them would also be perpendicular.
We also know that, when two vectors are perpendicular to each other, their dot product is 0. Therefore, we get
(Normal vector of 1st plane) . (Normal Vector of 2nd plane) = 0
\[\left( \widehat{i}+2\widehat{j}+2\widehat{k} \right).\left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right)=0\]
As we know that
\[\left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right).\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right)=ax+by+cz\]
Therefore, we get,
\[\left( 1.a \right)+\left( 2.b \right)+\left( 2.c \right)=0\]
Since, we have found that a = b, therefore by substituting b = a in the above equation, we get
\[\begin{align}
& a+2a+2c=0 \\
& \Rightarrow 2c+3a=0 \\
& \Rightarrow 2c=-3a \\
\end{align}\]
Therefore, we get \[c=\dfrac{-3a}{2}\]
As we have found that a = a, b = a and \[c=\dfrac{-3a}{2}\], therefore by substituting the values of a, b and c in equation (i) in terms of a, we get,
\[P:a\left( x+1 \right)+a\left( y-1 \right)+\left( \dfrac{-3a}{2} \right)\left( z-1 \right)=0\]
By simplifying the equation and taking ‘a’ common, we get,
\[P:a\left[ \left( x+1 \right)+\left( y-1 \right)-\dfrac{-3}{2}\left( z-1 \right) \right]=0\]
\[P:a\left[ \dfrac{2\left( x+1 \right)+2\left( y-1 \right)-3\left( z-1 \right)}{2} \right]=0\]
By multiplying by \[\dfrac{2}{a}\] on both sides and simplifying the equation, we get,
\[P:\left( 2x+2+2y-2-3z+3 \right)=0\]
Or, \[P:2x+2y-3z+3=0\]
Hence, we get the equation of plane as 2x + 2y – 3z + 3 = 0.
Note: Students must note that to find the equation of a plane, absolute values of a, b and c are not required but we must know their ratios like in the above solution, we have \[a:b:c\] as \[1:1:\dfrac{-3}{2}\]. Also, students can cross-check their equation of plane by satisfying points (-1, 1, 1) and (1, -1, 1) in it.
Complete step-by-step answer:
Here we are given a plane passing through the points whose coordinates are (-1, 1, 1) and(1, -1, 1) and perpendicular to the plane x + 2y + 2z = 5.
We have to find the equation of this plane. We know that for any plane ax + by + cx = d, \[a\widehat{i}+b\widehat{j}+c\widehat{k}\] is its normal vector.
Therefore, for the given plane x + 2y + 2z = 5, by comparing it to ax + by + cz = d, we get \[\widehat{i}+2\widehat{j}+2\widehat{k}\] as its normal vector.
Let us consider the normal vector of this plane as
\[\overrightarrow{P}=\widehat{i}+2\widehat{j}+2\widehat{k}....\left( i \right)\]
We know that if any plane P passes through the point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and the vector normal to it is \[a\widehat{i}+b\widehat{j}+c\widehat{k}\], then its equation is given by,
\[P:a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\]
As we are given that plane to be focused passes through (-1, 1, 1) and the vector normal to it is \[a\widehat{i}+b\widehat{j}+c\widehat{k}\] .
Then we get the equation of the plane as
\[P:a\left[ x-\left( -1 \right) \right]+b\left( y-1 \right)+c\left( z-1 \right)=0.....\left( i \right)\]
As we are given that this plane also passes through the point (1, -1, 1), therefore by substituting the value of x, y and z in the above equation, we get,
\[a\left[ 1-\left( -1 \right) \right]+b\left( -1-1 \right)+c\left( 1-1 \right)=0\]
By simplifying the above equation, we get,
\[\Rightarrow a\left( 2 \right)+b\left( -2 \right)=0\]
Or, \[2a-2b=0\]
Therefore, we get a = b
We know that both planes are perpendicular to each other, so the vectors normal to both of them would also be perpendicular.
We also know that, when two vectors are perpendicular to each other, their dot product is 0. Therefore, we get
(Normal vector of 1st plane) . (Normal Vector of 2nd plane) = 0
\[\left( \widehat{i}+2\widehat{j}+2\widehat{k} \right).\left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right)=0\]
As we know that
\[\left( a\widehat{i}+b\widehat{j}+c\widehat{k} \right).\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right)=ax+by+cz\]
Therefore, we get,
\[\left( 1.a \right)+\left( 2.b \right)+\left( 2.c \right)=0\]
Since, we have found that a = b, therefore by substituting b = a in the above equation, we get
\[\begin{align}
& a+2a+2c=0 \\
& \Rightarrow 2c+3a=0 \\
& \Rightarrow 2c=-3a \\
\end{align}\]
Therefore, we get \[c=\dfrac{-3a}{2}\]
As we have found that a = a, b = a and \[c=\dfrac{-3a}{2}\], therefore by substituting the values of a, b and c in equation (i) in terms of a, we get,
\[P:a\left( x+1 \right)+a\left( y-1 \right)+\left( \dfrac{-3a}{2} \right)\left( z-1 \right)=0\]
By simplifying the equation and taking ‘a’ common, we get,
\[P:a\left[ \left( x+1 \right)+\left( y-1 \right)-\dfrac{-3}{2}\left( z-1 \right) \right]=0\]
\[P:a\left[ \dfrac{2\left( x+1 \right)+2\left( y-1 \right)-3\left( z-1 \right)}{2} \right]=0\]
By multiplying by \[\dfrac{2}{a}\] on both sides and simplifying the equation, we get,
\[P:\left( 2x+2+2y-2-3z+3 \right)=0\]
Or, \[P:2x+2y-3z+3=0\]
Hence, we get the equation of plane as 2x + 2y – 3z + 3 = 0.
Note: Students must note that to find the equation of a plane, absolute values of a, b and c are not required but we must know their ratios like in the above solution, we have \[a:b:c\] as \[1:1:\dfrac{-3}{2}\]. Also, students can cross-check their equation of plane by satisfying points (-1, 1, 1) and (1, -1, 1) in it.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
