Find the equation of the circle passing through the three non-collinear points \[\left( 1,1 \right),\left( 2,-1 \right)\] and \[\left( 3,2 \right)\].
Answer
329.7k+ views
Hint: We will put the given points in the general equation of the circle and find the values of \[\left( g,f \right)\] and \[c\] and then form the required equation of the circle.
Given that \[\left( 1,1 \right),\left( 2,-1 \right)\] and \[\left( 3,2 \right)\] are three non-collinear points. All of these non-collinear points lie on the circle.
We have to find the equation of the given circle.
We know that the general equation of the circle is
\[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
All of these non-collinear points lie on the circle.
Putting the values of point \[A\left( 1,1 \right)\] in the general equation of the circle, we get
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
\[\Rightarrow {{1}^{2}}+{{1}^{2}}+2g\left( 1 \right)+2f\left( 1 \right)+c=0\]
\[\Rightarrow 1+1+2g+2f+c=0\]
\[\Rightarrow 2+2g+2f+c=0\]
\[\Rightarrow 2g+2f+c=-2.....\left( i \right)\]
Putting the value of point \[B\left( 2,-1 \right)\] in the general equation of the circle, we get,
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
\[\Rightarrow {{2}^{2}}+{{\left( -1 \right)}^{2}}+2g\left( 2 \right)+2f\left( -1 \right)+c=0\]
\[\Rightarrow 4+1+4g-2f+c=0\]
\[\Rightarrow 4g-2f=-c-5.....\left( ii \right)\]
Putting the value of point \[C\left( 3,2 \right)\] in the general equation of the circle, we get,
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
\[\Rightarrow {{3}^{2}}+{{\left( 2 \right)}^{2}}+2g\left( 3 \right)+2f\left( 2 \right)+c=0\]
\[\Rightarrow 9+4+6g+4f+c=0\]
\[\Rightarrow 6g+4f=-c-13.....\left( iii \right)\]
Now, we have three equations and three unknowns i.e. \[g,f\] and \[c\] respectively.
Solving equation \[\left( i \right)\] and \[\left( ii \right)\], we get
\[\begin{align}
& 2g+2f=-c-2 \\
& \underline{4g-2f=-c-5} \\
& 6g+0=-2c-7 \\
\end{align}\]
Putting the value of \[6g\] in equation \[\left( iii \right)\],
\[\Rightarrow 6g+4f=-c-13\]
\[\Rightarrow -2c-7+4f=-c-13\]
\[\Rightarrow 4f=c-6\]
\[\Rightarrow c=4f+6\]
Now, putting the value of \[c\] in the equation \[\left( i \right)\], we get
\[\Rightarrow 2g+2f=-4f-6-2\]
\[\Rightarrow 2g+2f=-4f-8\]
\[\Rightarrow 2g+6f=-8.....\left( v \right)\]
Putting the value of \['c'\] from the equation \[\left( iv \right)\] in the equation \[\left( ii \right)\], we get
\[\Rightarrow 4g-2f=-4f-6-5\]
\[\Rightarrow 4g+2f=-11.....\left( vi \right)\]
Solving equation \[\left( v \right)\] and \[\left( vi \right)\], we get
\[\begin{align}
& 4g+12f=-16 \\
& 4g+2f=-11 \\
& \underline{-\text{ - + }} \\
& 0+10f=-5 \\
\end{align}\]
\[f=-\dfrac{1}{2}\]
Put the value of \[f\]in the equation \[\left( v \right)\], we get
\[2g+6\times \left( -\dfrac{1}{2} \right)=-8\]
\[g=\dfrac{-8+3}{2}\]
\[g=\dfrac{-5}{2}\]
Similarly, putting the value of \[f\] in the equation \[\left( iv \right)\], we get
\[\Rightarrow c=4f+6\]
\[\Rightarrow c=4\times \left( \dfrac{-1}{2} \right)+6\]
\[\Rightarrow c=4\]
Now, we have all the required points to form an equation of the circle.
Thus, by putting the values in the general equation of the circle, we get
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+2\left( \dfrac{-5}{2} \right)x+2\left( \dfrac{-1}{2} \right)y+4=0\]
\[\Rightarrow {{x}^{2}}+{{y}^{2}}-5x-y+4=0\]
Note: Alternative method:
You can solve this question by using the distance formula
\[d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
\[d\] is the distance between two points.
By putting the values of the given point in the distance formula, we can find the coordinates of the circle and its radius and finally the required equation of the circle.
Given that \[\left( 1,1 \right),\left( 2,-1 \right)\] and \[\left( 3,2 \right)\] are three non-collinear points. All of these non-collinear points lie on the circle.
We have to find the equation of the given circle.

We know that the general equation of the circle is
\[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
All of these non-collinear points lie on the circle.
Putting the values of point \[A\left( 1,1 \right)\] in the general equation of the circle, we get
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
\[\Rightarrow {{1}^{2}}+{{1}^{2}}+2g\left( 1 \right)+2f\left( 1 \right)+c=0\]
\[\Rightarrow 1+1+2g+2f+c=0\]
\[\Rightarrow 2+2g+2f+c=0\]
\[\Rightarrow 2g+2f+c=-2.....\left( i \right)\]
Putting the value of point \[B\left( 2,-1 \right)\] in the general equation of the circle, we get,
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
\[\Rightarrow {{2}^{2}}+{{\left( -1 \right)}^{2}}+2g\left( 2 \right)+2f\left( -1 \right)+c=0\]
\[\Rightarrow 4+1+4g-2f+c=0\]
\[\Rightarrow 4g-2f=-c-5.....\left( ii \right)\]
Putting the value of point \[C\left( 3,2 \right)\] in the general equation of the circle, we get,
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
\[\Rightarrow {{3}^{2}}+{{\left( 2 \right)}^{2}}+2g\left( 3 \right)+2f\left( 2 \right)+c=0\]
\[\Rightarrow 9+4+6g+4f+c=0\]
\[\Rightarrow 6g+4f=-c-13.....\left( iii \right)\]
Now, we have three equations and three unknowns i.e. \[g,f\] and \[c\] respectively.
Solving equation \[\left( i \right)\] and \[\left( ii \right)\], we get
\[\begin{align}
& 2g+2f=-c-2 \\
& \underline{4g-2f=-c-5} \\
& 6g+0=-2c-7 \\
\end{align}\]
Putting the value of \[6g\] in equation \[\left( iii \right)\],
\[\Rightarrow 6g+4f=-c-13\]
\[\Rightarrow -2c-7+4f=-c-13\]
\[\Rightarrow 4f=c-6\]
\[\Rightarrow c=4f+6\]
Now, putting the value of \[c\] in the equation \[\left( i \right)\], we get
\[\Rightarrow 2g+2f=-4f-6-2\]
\[\Rightarrow 2g+2f=-4f-8\]
\[\Rightarrow 2g+6f=-8.....\left( v \right)\]
Putting the value of \['c'\] from the equation \[\left( iv \right)\] in the equation \[\left( ii \right)\], we get
\[\Rightarrow 4g-2f=-4f-6-5\]
\[\Rightarrow 4g+2f=-11.....\left( vi \right)\]
Solving equation \[\left( v \right)\] and \[\left( vi \right)\], we get
\[\begin{align}
& 4g+12f=-16 \\
& 4g+2f=-11 \\
& \underline{-\text{ - + }} \\
& 0+10f=-5 \\
\end{align}\]
\[f=-\dfrac{1}{2}\]
Put the value of \[f\]in the equation \[\left( v \right)\], we get
\[2g+6\times \left( -\dfrac{1}{2} \right)=-8\]
\[g=\dfrac{-8+3}{2}\]
\[g=\dfrac{-5}{2}\]
Similarly, putting the value of \[f\] in the equation \[\left( iv \right)\], we get
\[\Rightarrow c=4f+6\]
\[\Rightarrow c=4\times \left( \dfrac{-1}{2} \right)+6\]
\[\Rightarrow c=4\]
Now, we have all the required points to form an equation of the circle.
Thus, by putting the values in the general equation of the circle, we get
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
\[\Rightarrow {{x}^{2}}+{{y}^{2}}+2\left( \dfrac{-5}{2} \right)x+2\left( \dfrac{-1}{2} \right)y+4=0\]
\[\Rightarrow {{x}^{2}}+{{y}^{2}}-5x-y+4=0\]
Note: Alternative method:
You can solve this question by using the distance formula
\[d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
\[d\] is the distance between two points.
By putting the values of the given point in the distance formula, we can find the coordinates of the circle and its radius and finally the required equation of the circle.
Last updated date: 29th May 2023
•
Total views: 329.7k
•
Views today: 3.87k
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
