Answer
Verified
448.2k+ views
Hint: As per the given information in the question, abscissa means x- axis’s point so x \[{\text{ = 1}}\]. We can calculate the slope of the curve using \[\dfrac{{{\text{dy}}}}{{{\text{dx}}}}\] method. And also remember the information that tangent and normal are perpendicular to each other. And finally, we need to write the equation of the line using point-slope form.
Complete step by step solution: Given curve \[{\text{3}}{{\text{x}}^{\text{3}}}{\text{ - 4x + 7}}\],
First of all calculating the coordinates of the point that can be given as ,
\[
{\text{x = 1,}} \\
{\text{y = 3}}{{\text{x}}^{\text{3}}}{\text{ - 4x + 7}} \\
{\text{ = 3 - 4 + 7}} \\
{\text{ = 6}} \\
{\text{(x,y) = (1,6)}} \\
\]
Now, calculating the slope of tangent to the given curve at the designated coordinate,
\[
{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}_{{\text{x = 1}}}}{\text{ = (9}}{{\text{x}}^{\text{2}}}{\text{ - 4}}{{\text{)}}_{{\text{x = 1}}}} \\
{\text{ = 9(1) - 4}} \\
{\text{m = 5}} \\
\]
Hence as we know the slope and point so we can write the equation of line as ,
\[
{\text{y - }}{{\text{y}}_{\text{1}}}{\text{ = m(x - }}{{\text{x}}_{\text{1}}}{\text{)}} \\
\Rightarrow {\text{y - 6 = 5(x - 1)}} \\
\Rightarrow {\text{y - 6 = 5x - 5}} \\
\Rightarrow {\text{5x - y + 1 = 0}} \\
\]
Above is the equation of tangent and now using the perpendicular condition to calculate the slope of normal’s line.
\[
{{\text{m}}_1}{m_2} = - 1 \\
{\text{as, }}{m_1} = 5 \\
\Rightarrow {m_2} = \dfrac{{ - 1}}{5} \\
\]
Now, again using point slope method to write the equation of normal,
\[
{\text{y - }}{{\text{y}}_{\text{1}}}{\text{ = m(x - }}{{\text{x}}_{\text{1}}}{\text{)}} \\
\Rightarrow {\text{y - 6 = }}\dfrac{{ - 1}}{5}{\text{(x - 1)}} \\
\Rightarrow {\text{5y - 30 = - x + 1}} \\
\Rightarrow {\text{5y + x = 31 = 0}} \\
\]
Hence , \[{\text{5y - 30 = - x + 1}}\] is equation of normal.
Note: In common usage, the abscissa refers to the horizontal (x) axis and the ordinate refers to the vertical (y) axis of a standard two-dimensional graph.
A tangent to a curve is a line that touches the curve at one point and has the same slope as the curve at that point. A normal to a curve is a line perpendicular to a tangent to the curve.
Complete step by step solution: Given curve \[{\text{3}}{{\text{x}}^{\text{3}}}{\text{ - 4x + 7}}\],
First of all calculating the coordinates of the point that can be given as ,
\[
{\text{x = 1,}} \\
{\text{y = 3}}{{\text{x}}^{\text{3}}}{\text{ - 4x + 7}} \\
{\text{ = 3 - 4 + 7}} \\
{\text{ = 6}} \\
{\text{(x,y) = (1,6)}} \\
\]
Now, calculating the slope of tangent to the given curve at the designated coordinate,
\[
{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}_{{\text{x = 1}}}}{\text{ = (9}}{{\text{x}}^{\text{2}}}{\text{ - 4}}{{\text{)}}_{{\text{x = 1}}}} \\
{\text{ = 9(1) - 4}} \\
{\text{m = 5}} \\
\]
Hence as we know the slope and point so we can write the equation of line as ,
\[
{\text{y - }}{{\text{y}}_{\text{1}}}{\text{ = m(x - }}{{\text{x}}_{\text{1}}}{\text{)}} \\
\Rightarrow {\text{y - 6 = 5(x - 1)}} \\
\Rightarrow {\text{y - 6 = 5x - 5}} \\
\Rightarrow {\text{5x - y + 1 = 0}} \\
\]
Above is the equation of tangent and now using the perpendicular condition to calculate the slope of normal’s line.
\[
{{\text{m}}_1}{m_2} = - 1 \\
{\text{as, }}{m_1} = 5 \\
\Rightarrow {m_2} = \dfrac{{ - 1}}{5} \\
\]
Now, again using point slope method to write the equation of normal,
\[
{\text{y - }}{{\text{y}}_{\text{1}}}{\text{ = m(x - }}{{\text{x}}_{\text{1}}}{\text{)}} \\
\Rightarrow {\text{y - 6 = }}\dfrac{{ - 1}}{5}{\text{(x - 1)}} \\
\Rightarrow {\text{5y - 30 = - x + 1}} \\
\Rightarrow {\text{5y + x = 31 = 0}} \\
\]
Hence , \[{\text{5y - 30 = - x + 1}}\] is equation of normal.
Note: In common usage, the abscissa refers to the horizontal (x) axis and the ordinate refers to the vertical (y) axis of a standard two-dimensional graph.
A tangent to a curve is a line that touches the curve at one point and has the same slope as the curve at that point. A normal to a curve is a line perpendicular to a tangent to the curve.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE