How to find the domain of $g(x)=\sqrt[3]{x+3}$?
Answer
Verified
440.4k+ views
Hint:For a real valued function, the domain of the function is a set of real numbers which consists of all the values of x for which the function yields a real value of y.For finding the domain of the given function take a cube on both sides of the function.
Complete step by step answer:
Let us first understand what is meant by domain of a function. Suppose, we have a function f such that $y=f(x)$, where x is the independent variable and y is the dependent variable that depends on the value of x. Then, we define something called the domain of the given function. For a real valued function, the domain of the function is a set of real numbers which consists of all the values of x for which the function yields a real value of y.
In other words, domain is the set of real values of x for which the value of y exists. In the given question, the function is g(x). And it is said that $g(x)=\sqrt[3]{x+3}$. Let us write that $g(x)=y$ for easy understanding.Hence, we get that $y=\sqrt[3]{x+3}$ …. (i)
Now, we have to find the values of x for which we have a real value of y. What we can do here is that we can take the cube of both sides of equation (i).
${{y}^{3}}={{\left( \sqrt[3]{x+3} \right)}^{3}}$
This further simplifies to ${{y}^{3}}=x+3$
Let us now analyse the left hand side of the above equation, i.e. ${{y}^{3}}$ .We know that a cube of any real number can yield a positive real number as well as a negative real number. It also yields a zero if the number is zero. Therefore, the value of ${{y}^{3}}$ can be a real positive number as well as a real negative number. It can also be equal to zero.
This means that the term ${{y}^{3}}$ takes the value of all the real numbers. Since ${{y}^{3}}=x+3$, then this means that $x+3$ takes the value of all the real numbers.We know that 3 is a real number and sum of two real numbers is a real number. Therefore, x can be any real number.
Hence, the domain of the given function is a set of all the real numbers.
Note:Note that no functions have domain of all the real numbers. For example, consider $y=\sqrt{x}$.Here, we can write that ${{y}^{2}}=x$. We know that for real values of y, ${{y}^{2}}$ is always positive or zero. Therefore, x must be zero or any positive real number. Hence, the domain of this function is a set of positive real numbers including zero.
Complete step by step answer:
Let us first understand what is meant by domain of a function. Suppose, we have a function f such that $y=f(x)$, where x is the independent variable and y is the dependent variable that depends on the value of x. Then, we define something called the domain of the given function. For a real valued function, the domain of the function is a set of real numbers which consists of all the values of x for which the function yields a real value of y.
In other words, domain is the set of real values of x for which the value of y exists. In the given question, the function is g(x). And it is said that $g(x)=\sqrt[3]{x+3}$. Let us write that $g(x)=y$ for easy understanding.Hence, we get that $y=\sqrt[3]{x+3}$ …. (i)
Now, we have to find the values of x for which we have a real value of y. What we can do here is that we can take the cube of both sides of equation (i).
${{y}^{3}}={{\left( \sqrt[3]{x+3} \right)}^{3}}$
This further simplifies to ${{y}^{3}}=x+3$
Let us now analyse the left hand side of the above equation, i.e. ${{y}^{3}}$ .We know that a cube of any real number can yield a positive real number as well as a negative real number. It also yields a zero if the number is zero. Therefore, the value of ${{y}^{3}}$ can be a real positive number as well as a real negative number. It can also be equal to zero.
This means that the term ${{y}^{3}}$ takes the value of all the real numbers. Since ${{y}^{3}}=x+3$, then this means that $x+3$ takes the value of all the real numbers.We know that 3 is a real number and sum of two real numbers is a real number. Therefore, x can be any real number.
Hence, the domain of the given function is a set of all the real numbers.
Note:Note that no functions have domain of all the real numbers. For example, consider $y=\sqrt{x}$.Here, we can write that ${{y}^{2}}=x$. We know that for real values of y, ${{y}^{2}}$ is always positive or zero. Therefore, x must be zero or any positive real number. Hence, the domain of this function is a set of positive real numbers including zero.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE