
Find the distance of the point (2, 12, 5) from the point of intersection of the line \[\overrightarrow{r}=2\widehat{i}-4\widehat{j}+2\widehat{k}+\lambda (3\widehat{i}+4\widehat{j}+2\widehat{k})\]and the plane\[\overrightarrow{r}.\left( \widehat{i}-2\widehat{j}+\widehat{k} \right)=0.\]
Answer
607.2k+ views
Hint: First, find out any general point on the given line, \[\overrightarrow{r}=2\widehat{i}-4\widehat{j}+2\widehat{k}+\lambda (3\widehat{i}+4\widehat{j}+2\widehat{k})\]. Substitute this point in the given plane and find out the intersection point performing the scalar product of vectors. Use the distance formula to find out the distance accordingly.
We need to find the distance of the point (2, 12, 5) from the point of intersection of the line \[\overrightarrow{r}=2\widehat{i}-4\widehat{j}+2\widehat{k}+\lambda (3\widehat{i}+4\widehat{j}+2\widehat{k})\]and the plane \[\overrightarrow{r}.\left( \widehat{i}-2\widehat{j}+\widehat{k} \right)=0.\]
First, let us consider the given line:
\[\overrightarrow{r}=2\widehat{i}-4\widehat{j}+2\widehat{k}+\lambda (3\widehat{i}+4\widehat{j}+2\widehat{k})\]
The above line can be rewritten and expressed as:
\[\overrightarrow{r}=\left( 2+3\lambda \right)\widehat{i}+\left( -4+4\lambda \right)\widehat{j}+\left( 2+2\lambda \right)\widehat{k}.........(1)\]
Now a general point on this line can be taken as:
\[x=2+3\lambda \]
\[y=-4+4\lambda \]
\[z=2+2\lambda \]
As it was mentioned that the line and the plane intersect each other at a point, then we know that the line equation will satisfy the plane equation at the intersection point.
So, substituting equation (1) in the plane equation, we will have
\[\left[ \left( 2+3\lambda \right)\widehat{i}+\left( -4+4\lambda \right)\widehat{j}+\left( 2+2\lambda \right)\widehat{k} \right].\left( \widehat{i}-2\widehat{j}+\widehat{k} \right)=0\]
Performing the scalar product or dot product of vectors, we can simplify the above equation as:
\[\left( 2+3\lambda \right)1+\left( -4+4\lambda \right)\left( -2 \right)+\left( 2+2\lambda \right)1=0\]
\[2+3\lambda +8-8\lambda +2+2\lambda =0\]
\[12-3\lambda =0\]
\[3\lambda =12\]
\[\lambda =4\]
So, we find the value of \[\lambda \] is 4.
Therefore, the coordinates of intersection point will be:
\[x=2+3\lambda =14\]
\[y=-4+4\lambda =12\]
\[z=2+2\lambda =10\]
We know the distance between any two points \[\left( a,b,c \right)\] and \[\left( d,e,f \right)\] is given by:\[\sqrt{{{(d-a)}^{2}}+{{(e-b)}^{2}}+{{(f-c)}^{2}}}\]
Now the distance between (2, 12, 5) and (14, 12, 10) is given as:
\[\sqrt{{{\left( 14-2 \right)}^{2}}+{{\left( 12-12 \right)}^{2}}+{{\left( 10-5 \right)}^{2}}}\]
Solving, further we get:
\[\sqrt{{{12}^{2}}+{{0}^{2}}+{{5}^{2}}}\]
\[\sqrt{169}\]
\[=13\] units
So, the distance of the point (2, 12, 5) from the point of intersection of the line \[\overrightarrow{r}=2\widehat{i}-4\widehat{j}+2\widehat{k}+\lambda (3\widehat{i}+4\widehat{j}+2\widehat{k})\] and the plane\[\overrightarrow{r}.\left( \widehat{i}-2\widehat{j}+\widehat{k} \right)=0\] is 13 units.
Note: While performing the scalar product, make sure that you are multiplying the corresponding components accordingly or you will get a different value of \[\lambda \], which further leads to a wrong answer. As distance cannot be expressed in negatives, we have omitted the negative value after solving the square root.
We need to find the distance of the point (2, 12, 5) from the point of intersection of the line \[\overrightarrow{r}=2\widehat{i}-4\widehat{j}+2\widehat{k}+\lambda (3\widehat{i}+4\widehat{j}+2\widehat{k})\]and the plane \[\overrightarrow{r}.\left( \widehat{i}-2\widehat{j}+\widehat{k} \right)=0.\]
First, let us consider the given line:
\[\overrightarrow{r}=2\widehat{i}-4\widehat{j}+2\widehat{k}+\lambda (3\widehat{i}+4\widehat{j}+2\widehat{k})\]
The above line can be rewritten and expressed as:
\[\overrightarrow{r}=\left( 2+3\lambda \right)\widehat{i}+\left( -4+4\lambda \right)\widehat{j}+\left( 2+2\lambda \right)\widehat{k}.........(1)\]
Now a general point on this line can be taken as:
\[x=2+3\lambda \]
\[y=-4+4\lambda \]
\[z=2+2\lambda \]
As it was mentioned that the line and the plane intersect each other at a point, then we know that the line equation will satisfy the plane equation at the intersection point.
So, substituting equation (1) in the plane equation, we will have
\[\left[ \left( 2+3\lambda \right)\widehat{i}+\left( -4+4\lambda \right)\widehat{j}+\left( 2+2\lambda \right)\widehat{k} \right].\left( \widehat{i}-2\widehat{j}+\widehat{k} \right)=0\]
Performing the scalar product or dot product of vectors, we can simplify the above equation as:
\[\left( 2+3\lambda \right)1+\left( -4+4\lambda \right)\left( -2 \right)+\left( 2+2\lambda \right)1=0\]
\[2+3\lambda +8-8\lambda +2+2\lambda =0\]
\[12-3\lambda =0\]
\[3\lambda =12\]
\[\lambda =4\]
So, we find the value of \[\lambda \] is 4.
Therefore, the coordinates of intersection point will be:
\[x=2+3\lambda =14\]
\[y=-4+4\lambda =12\]
\[z=2+2\lambda =10\]
We know the distance between any two points \[\left( a,b,c \right)\] and \[\left( d,e,f \right)\] is given by:\[\sqrt{{{(d-a)}^{2}}+{{(e-b)}^{2}}+{{(f-c)}^{2}}}\]
Now the distance between (2, 12, 5) and (14, 12, 10) is given as:
\[\sqrt{{{\left( 14-2 \right)}^{2}}+{{\left( 12-12 \right)}^{2}}+{{\left( 10-5 \right)}^{2}}}\]
Solving, further we get:
\[\sqrt{{{12}^{2}}+{{0}^{2}}+{{5}^{2}}}\]
\[\sqrt{169}\]
\[=13\] units
So, the distance of the point (2, 12, 5) from the point of intersection of the line \[\overrightarrow{r}=2\widehat{i}-4\widehat{j}+2\widehat{k}+\lambda (3\widehat{i}+4\widehat{j}+2\widehat{k})\] and the plane\[\overrightarrow{r}.\left( \widehat{i}-2\widehat{j}+\widehat{k} \right)=0\] is 13 units.
Note: While performing the scalar product, make sure that you are multiplying the corresponding components accordingly or you will get a different value of \[\lambda \], which further leads to a wrong answer. As distance cannot be expressed in negatives, we have omitted the negative value after solving the square root.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

