Answer

Verified

404.1k+ views

**Hint**: To obtain the required differential equation of the given equation we will eliminate ‘A’ and ‘B’ from it by taking its first and second order derivatives and solving them together to get the required solution.

Product rule of derivatives$\dfrac{d}{{dx}}\left( {u.v} \right) = u.\dfrac{d}{{dx}}\left( v \right) + v.\dfrac{d}{{dx}}\left( u \right)$, $\dfrac{d}{{dx}}(\sin x) = \cos x,\,\,\,\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$

**:**

__Complete step-by-step answer__To find the differential equation of a given function $y = {e^x}\left( {A\cos x + B\sin x} \right)$we have to remove ‘A’ and ‘B’ from it by taking derivatives.

As, there are two variables present in the given equation. So, we differentiate it two times, first we differentiate it to calculate first order derivative $\dfrac{{dy}}{{dx}}$ and then using result we calculate second order derivative$\dfrac{{{d^2}y}}{{d{x^2}}}$.

$y = {e^x}\left( {A\cos x + B\sin x} \right)$

Differentiating w.r.t. ‘x’ we have

$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left\{ {{e^x}\left( {A\cos x + B\sin x} \right)} \right\}$

Applying product rule of derivative on right hand side

$\dfrac{{dy}}{{dx}} = {e^x}\dfrac{d}{{dx}}\left( {A\cos x + B\sin x} \right) + \left( {A\cos x + B\sin x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$

$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left\{ {A\left( { - \sin x} \right) + B\left( {\cos x} \right)} \right\} + \left( {A\cos x + B\sin x} \right){e^x}$

Taking common and simplify above equation

$\dfrac{{dy}}{{dx}} = {e^x}\left\{ { - A\sin x + B\cos x + A\cos x + B\sin x} \right\}$

Or we can write above equation as

$\dfrac{{dy}}{{dx}} = {e^x}\left( { - A\sin x + B\cos x} \right) + {e^x}\left( {A\cos x + B\sin x} \right)$

$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\sin x + B\cos x} \right) + y$ $\because y = {e^x}\left( {A\cos x + B\sin x} \right)$

Or we can write above equation as

$\dfrac{{dy}}{{dx}} - y = {e^x}\left( { - A\sin x + B\cos x} \right)$

Again differentiating above equation to find its double derivative w.r.t. ‘x’

$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\dfrac{d}{{dx}}\left( { - A\sin x + B\cos x} \right) + \left( { - A\sin x + B\cos x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$

$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + \left( { - A\sin x + B\cos x} \right){e^x}$

Taking ${e^x}$ common from right hand side and simplifying it

$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x - A\sin x + B\cos x} \right)$

$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + {e^x}\left( { - A\sin x + B\cos x} \right)$

Using vale of $\dfrac{{dy}}{{dx}} - y = {e^x}\left( { - A\sin x + B\cos x} \right)$ calculated above in above equation we have

$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + \dfrac{{dy}}{{dx}} - y$

$

\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + y = - {e^x}\left( {A\cos x + B\sin x} \right) \\

\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + y = - y \\

\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + 2y = 0 \\

$

Above equations don’t contain ‘A’ and ‘B’.

So, we can say that this is the required differential equation of the given equations $y = {e^x}\left( {A\cos x + B\sin x} \right)$

**Note**: To find the differential equation of any given equation we are just required to eliminate the constant present in the given equation. If there is only one constant then we differentiate the given equation only one time to get the required solution but in case if there are two constants then we have to differentiate it up to a double derivative to find the corresponding differential equation.

Recently Updated Pages

How do you find slope point slope slope intercept standard class 12 maths CBSE

How do you find B1 We know that B2B+2I3 class 12 maths CBSE

How do you integrate int dfracxsqrt x2 + 9 dx class 12 maths CBSE

How do you integrate int left dfracx2 1x + 1 right class 12 maths CBSE

How do you find the critical points of yx2sin x on class 12 maths CBSE

How do you find the general solution to dfracdydx class 12 maths CBSE

Trending doubts

Give 10 examples for herbs , shrubs , climbers , creepers

Difference Between Plant Cell and Animal Cell

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

Write the 6 fundamental rights of India and explain in detail