Answer
Verified
438k+ views
Hint: To obtain the required differential equation of the given equation we will eliminate ‘A’ and ‘B’ from it by taking its first and second order derivatives and solving them together to get the required solution.
Product rule of derivatives$\dfrac{d}{{dx}}\left( {u.v} \right) = u.\dfrac{d}{{dx}}\left( v \right) + v.\dfrac{d}{{dx}}\left( u \right)$, $\dfrac{d}{{dx}}(\sin x) = \cos x,\,\,\,\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$
Complete step-by-step answer:
To find the differential equation of a given function $y = {e^x}\left( {A\cos x + B\sin x} \right)$we have to remove ‘A’ and ‘B’ from it by taking derivatives.
As, there are two variables present in the given equation. So, we differentiate it two times, first we differentiate it to calculate first order derivative $\dfrac{{dy}}{{dx}}$ and then using result we calculate second order derivative$\dfrac{{{d^2}y}}{{d{x^2}}}$.
$y = {e^x}\left( {A\cos x + B\sin x} \right)$
Differentiating w.r.t. ‘x’ we have
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left\{ {{e^x}\left( {A\cos x + B\sin x} \right)} \right\}$
Applying product rule of derivative on right hand side
$\dfrac{{dy}}{{dx}} = {e^x}\dfrac{d}{{dx}}\left( {A\cos x + B\sin x} \right) + \left( {A\cos x + B\sin x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left\{ {A\left( { - \sin x} \right) + B\left( {\cos x} \right)} \right\} + \left( {A\cos x + B\sin x} \right){e^x}$
Taking common and simplify above equation
$\dfrac{{dy}}{{dx}} = {e^x}\left\{ { - A\sin x + B\cos x + A\cos x + B\sin x} \right\}$
Or we can write above equation as
$\dfrac{{dy}}{{dx}} = {e^x}\left( { - A\sin x + B\cos x} \right) + {e^x}\left( {A\cos x + B\sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\sin x + B\cos x} \right) + y$ $\because y = {e^x}\left( {A\cos x + B\sin x} \right)$
Or we can write above equation as
$\dfrac{{dy}}{{dx}} - y = {e^x}\left( { - A\sin x + B\cos x} \right)$
Again differentiating above equation to find its double derivative w.r.t. ‘x’
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\dfrac{d}{{dx}}\left( { - A\sin x + B\cos x} \right) + \left( { - A\sin x + B\cos x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + \left( { - A\sin x + B\cos x} \right){e^x}$
Taking ${e^x}$ common from right hand side and simplifying it
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x - A\sin x + B\cos x} \right)$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + {e^x}\left( { - A\sin x + B\cos x} \right)$
Using vale of $\dfrac{{dy}}{{dx}} - y = {e^x}\left( { - A\sin x + B\cos x} \right)$ calculated above in above equation we have
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + \dfrac{{dy}}{{dx}} - y$
$
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + y = - {e^x}\left( {A\cos x + B\sin x} \right) \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + y = - y \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + 2y = 0 \\
$
Above equations don’t contain ‘A’ and ‘B’.
So, we can say that this is the required differential equation of the given equations $y = {e^x}\left( {A\cos x + B\sin x} \right)$
Note: To find the differential equation of any given equation we are just required to eliminate the constant present in the given equation. If there is only one constant then we differentiate the given equation only one time to get the required solution but in case if there are two constants then we have to differentiate it up to a double derivative to find the corresponding differential equation.
Product rule of derivatives$\dfrac{d}{{dx}}\left( {u.v} \right) = u.\dfrac{d}{{dx}}\left( v \right) + v.\dfrac{d}{{dx}}\left( u \right)$, $\dfrac{d}{{dx}}(\sin x) = \cos x,\,\,\,\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$
Complete step-by-step answer:
To find the differential equation of a given function $y = {e^x}\left( {A\cos x + B\sin x} \right)$we have to remove ‘A’ and ‘B’ from it by taking derivatives.
As, there are two variables present in the given equation. So, we differentiate it two times, first we differentiate it to calculate first order derivative $\dfrac{{dy}}{{dx}}$ and then using result we calculate second order derivative$\dfrac{{{d^2}y}}{{d{x^2}}}$.
$y = {e^x}\left( {A\cos x + B\sin x} \right)$
Differentiating w.r.t. ‘x’ we have
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left\{ {{e^x}\left( {A\cos x + B\sin x} \right)} \right\}$
Applying product rule of derivative on right hand side
$\dfrac{{dy}}{{dx}} = {e^x}\dfrac{d}{{dx}}\left( {A\cos x + B\sin x} \right) + \left( {A\cos x + B\sin x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left\{ {A\left( { - \sin x} \right) + B\left( {\cos x} \right)} \right\} + \left( {A\cos x + B\sin x} \right){e^x}$
Taking common and simplify above equation
$\dfrac{{dy}}{{dx}} = {e^x}\left\{ { - A\sin x + B\cos x + A\cos x + B\sin x} \right\}$
Or we can write above equation as
$\dfrac{{dy}}{{dx}} = {e^x}\left( { - A\sin x + B\cos x} \right) + {e^x}\left( {A\cos x + B\sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\sin x + B\cos x} \right) + y$ $\because y = {e^x}\left( {A\cos x + B\sin x} \right)$
Or we can write above equation as
$\dfrac{{dy}}{{dx}} - y = {e^x}\left( { - A\sin x + B\cos x} \right)$
Again differentiating above equation to find its double derivative w.r.t. ‘x’
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\dfrac{d}{{dx}}\left( { - A\sin x + B\cos x} \right) + \left( { - A\sin x + B\cos x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + \left( { - A\sin x + B\cos x} \right){e^x}$
Taking ${e^x}$ common from right hand side and simplifying it
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x - A\sin x + B\cos x} \right)$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + {e^x}\left( { - A\sin x + B\cos x} \right)$
Using vale of $\dfrac{{dy}}{{dx}} - y = {e^x}\left( { - A\sin x + B\cos x} \right)$ calculated above in above equation we have
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + \dfrac{{dy}}{{dx}} - y$
$
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + y = - {e^x}\left( {A\cos x + B\sin x} \right) \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + y = - y \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + 2y = 0 \\
$
Above equations don’t contain ‘A’ and ‘B’.
So, we can say that this is the required differential equation of the given equations $y = {e^x}\left( {A\cos x + B\sin x} \right)$
Note: To find the differential equation of any given equation we are just required to eliminate the constant present in the given equation. If there is only one constant then we differentiate the given equation only one time to get the required solution but in case if there are two constants then we have to differentiate it up to a double derivative to find the corresponding differential equation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE