
How do you find the derivative of $y=\ln \left( {{x}^{2}}y \right)$?
Answer
539.1k+ views
Hint: We solve the given equation using the identity formula of logarithm where the base of $\ln $ is always $e$. The first step would be to eliminate the logarithm function. Then we first define the multiplication rule and how the differentiation of function works. We take multiplication of these two different differentiated values. We take the $\dfrac{dy}{dx}$ altogether.
Complete step-by-step solution:
We have $\ln a={{\log }_{e}}a$. So, $y=\ln \left( {{x}^{2}}y \right)$ becomes $y={{\log }_{e}}\left( {{x}^{2}}y \right)$.
We know ${{\log }_{e}}a=y\Rightarrow a={{e}^{y}}$. Applying the rule in case of $y={{\log }_{e}}\left( {{x}^{2}}y \right)$, we get
$\begin{align}
& y={{\log }_{e}}\left( {{x}^{2}}y \right) \\
& \Rightarrow {{x}^{2}}y={{e}^{y}} \\
\end{align}$
We differentiate the given function ${{x}^{2}}y={{e}^{y}}$ with respect to $x$ using the chain rule.
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
The above-mentioned rule is the multiplication rule. We apply that on ${{x}^{2}}y$. We assume the functions where \[u\left( x \right)={{x}^{2}},v\left( x \right)=y\]
We know that differentiation of \[u\left( x \right)={{x}^{2}}\] is ${{u}^{'}}\left( x \right)=2x$ as $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$ and differentiation of $v\left( x \right)=y$ is \[{{v}^{'}}\left( x \right)=\dfrac{dy}{dx}\]. We apply the formula of \[\dfrac{d}{dx}\left( {{e}^{y}} \right)={{e}^{y}}\dfrac{dy}{dx}\]. This followed the differential form of chain rule.
We now take differentiation on both parts of ${{x}^{2}}y={{e}^{y}}$ and get \[\dfrac{d}{dx}\left[ {{x}^{2}}y \right]=\dfrac{d}{dx}\left[ {{e}^{y}} \right]\].
We place the chain rule and \[\dfrac{d}{dx}\left( {{e}^{y}} \right)={{e}^{y}}\dfrac{dy}{dx}\] to get \[y\times 2x+{{x}^{2}}\dfrac{dy}{dx}={{e}^{y}}\dfrac{dy}{dx}\].
We take all the $\dfrac{dy}{dx}$ forms altogether to get
\[\begin{align}
& y\times 2x+{{x}^{2}}\dfrac{dy}{dx}={{e}^{y}}\dfrac{dy}{dx} \\
& \Rightarrow \dfrac{dy}{dx}\left( {{e}^{y}}-{{x}^{2}} \right)=2xy \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{2xy}{\left( {{e}^{y}}-{{x}^{2}} \right)} \\
\end{align}\]
We now replace the value of ${{x}^{2}}y={{e}^{y}}$ in the denominator and get
\[\dfrac{dy}{dx}=\dfrac{2xy}{\left( {{x}^{2}}y-{{x}^{2}} \right)}=\dfrac{2xy}{{{x}^{2}}\left( y-1 \right)}=\dfrac{2y}{x\left( y-1 \right)}\].
Therefore, differentiation of $y=\ln \left( {{x}^{2}}y \right)$ is \[\dfrac{2y}{x\left( y-1 \right)}\].
Note: We need to remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step-by-step solution:
We have $\ln a={{\log }_{e}}a$. So, $y=\ln \left( {{x}^{2}}y \right)$ becomes $y={{\log }_{e}}\left( {{x}^{2}}y \right)$.
We know ${{\log }_{e}}a=y\Rightarrow a={{e}^{y}}$. Applying the rule in case of $y={{\log }_{e}}\left( {{x}^{2}}y \right)$, we get
$\begin{align}
& y={{\log }_{e}}\left( {{x}^{2}}y \right) \\
& \Rightarrow {{x}^{2}}y={{e}^{y}} \\
\end{align}$
We differentiate the given function ${{x}^{2}}y={{e}^{y}}$ with respect to $x$ using the chain rule.
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
The above-mentioned rule is the multiplication rule. We apply that on ${{x}^{2}}y$. We assume the functions where \[u\left( x \right)={{x}^{2}},v\left( x \right)=y\]
We know that differentiation of \[u\left( x \right)={{x}^{2}}\] is ${{u}^{'}}\left( x \right)=2x$ as $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$ and differentiation of $v\left( x \right)=y$ is \[{{v}^{'}}\left( x \right)=\dfrac{dy}{dx}\]. We apply the formula of \[\dfrac{d}{dx}\left( {{e}^{y}} \right)={{e}^{y}}\dfrac{dy}{dx}\]. This followed the differential form of chain rule.
We now take differentiation on both parts of ${{x}^{2}}y={{e}^{y}}$ and get \[\dfrac{d}{dx}\left[ {{x}^{2}}y \right]=\dfrac{d}{dx}\left[ {{e}^{y}} \right]\].
We place the chain rule and \[\dfrac{d}{dx}\left( {{e}^{y}} \right)={{e}^{y}}\dfrac{dy}{dx}\] to get \[y\times 2x+{{x}^{2}}\dfrac{dy}{dx}={{e}^{y}}\dfrac{dy}{dx}\].
We take all the $\dfrac{dy}{dx}$ forms altogether to get
\[\begin{align}
& y\times 2x+{{x}^{2}}\dfrac{dy}{dx}={{e}^{y}}\dfrac{dy}{dx} \\
& \Rightarrow \dfrac{dy}{dx}\left( {{e}^{y}}-{{x}^{2}} \right)=2xy \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{2xy}{\left( {{e}^{y}}-{{x}^{2}} \right)} \\
\end{align}\]
We now replace the value of ${{x}^{2}}y={{e}^{y}}$ in the denominator and get
\[\dfrac{dy}{dx}=\dfrac{2xy}{\left( {{x}^{2}}y-{{x}^{2}} \right)}=\dfrac{2xy}{{{x}^{2}}\left( y-1 \right)}=\dfrac{2y}{x\left( y-1 \right)}\].
Therefore, differentiation of $y=\ln \left( {{x}^{2}}y \right)$ is \[\dfrac{2y}{x\left( y-1 \right)}\].
Note: We need to remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

