Answer

Verified

408.9k+ views

Hint: In this question, we have to find derivatives of each term of the summation and apply the relevant derivative and basic algebra formulae.

Let the function \[g(x)={{x}^{n}}+a{{x}^{n-1}}+{{a}^{2}}{{x}^{n-2}}+.........+{{a}^{n-1}}x+{{a}^{n}}\]

The derivative of \[g(x)=\dfrac{dg(x)}{dx}={{g}^{1}}(x)\]

\[\begin{align}

& \Rightarrow {{g}^{1}}(x)=\dfrac{d\left( {{x}^{n}}+a{{x}^{n-1}}+{{a}^{2}}{{x}^{n-2}}+.........+{{a}^{n-1}}x+{{a}^{n}} \right)}{dx} \\

& \\

\end{align}\]

We know that derivative of the summation of terms is equal to the summation of the derivation of terms.

Thus, the above function can be written as

\[{{g}^{1}}(x)=\dfrac{d{{x}^{n}}}{dx}+\dfrac{d\left( a{{x}^{n-1}} \right)}{dx}+\dfrac{d\left( {{a}^{2}}{{x}^{n-2}} \right)}{dx}+........\dfrac{d\left( {{a}^{n-1}}x \right)}{dx}+\dfrac{d\left( {{a}^{n}} \right)}{dx}\]

We know that derivative of \[{{x}^{n}}\]is given by the formula \[\dfrac{d({{x}^{n}})}{dx}=n.{{x}^{n-1}}\] and the derivative of constant is given by the formula \[\dfrac{da}{dx}=0\].

The formula for derivative of the product of two functions is given by \[\dfrac{d\left( uv \right)}{dx}=u\dfrac{d(v)}{dx}+v\dfrac{d(u)}{dx}\]

Where \[u,v\]can be functions of \[x\] or constant values.

Thus, we get \[\dfrac{d\left( a{{x}^{n-1}} \right)}{dx}={{x}^{n-1}}\dfrac{d\left( a \right)}{dx}+a\dfrac{d({{x}^{n-1}})}{dx}\]

\[={{x}^{n-1}}(0)+a(n-1)({{x}^{(n-1)-1}})\]

\[=a(n-1)({{x}^{n-2}})\]

By applying the formula for other terms of the equation we get,

\[{{g}^{1}}(x)=n.{{x}^{n-1}}+a(n-1){{x}^{n-2}}+{{a}^{2}}(n-2){{x}^{n-3}}.........+{{a}^{n-1}}(1){{x}^{0}}+0\] ---(1)

We know the formula \[{{x}^{0}}=1\]

\[\therefore {{g}^{1}}(x)=n.{{x}^{n-1}}+a(n-1){{x}^{n-2}}+{{a}^{2}}(n-2){{x}^{n-3}}.........+{{a}^{n-1}}\]

Hence, the derivative of \[{{x}^{n}}+a{{x}^{n-1}}+{{a}^{2}}{{x}^{n-2}}+...+{{a}^{n-1}}x+{{a}^{n}}\]\[=n.{{x}^{n-1}}+a(n-1){{x}^{n-2}}+{{a}^{2}}(n-2){{x}^{n-3}}+...+{{a}^{n-1}}\]

Note: We might mistake the question to be a binomial expansion expression, but the question does not involve the factorial terms of a binomial expansion. The question is an algebraic expression. In the question, since \[a\] is a constant only \[x\] is variable, so the expression should be differentiated with respect to \[x\]. To solve the question, we have to apply the derivative formula of the product of two functions to eliminate the constant values in the derivation, this will ease the procedure of solving. We have to apply basic algebra formulae which are needed in solving the step to arrive at the solution. While solving the question remember to solve it each term wise to avoid overcrowding of the variables.

Let the function \[g(x)={{x}^{n}}+a{{x}^{n-1}}+{{a}^{2}}{{x}^{n-2}}+.........+{{a}^{n-1}}x+{{a}^{n}}\]

The derivative of \[g(x)=\dfrac{dg(x)}{dx}={{g}^{1}}(x)\]

\[\begin{align}

& \Rightarrow {{g}^{1}}(x)=\dfrac{d\left( {{x}^{n}}+a{{x}^{n-1}}+{{a}^{2}}{{x}^{n-2}}+.........+{{a}^{n-1}}x+{{a}^{n}} \right)}{dx} \\

& \\

\end{align}\]

We know that derivative of the summation of terms is equal to the summation of the derivation of terms.

Thus, the above function can be written as

\[{{g}^{1}}(x)=\dfrac{d{{x}^{n}}}{dx}+\dfrac{d\left( a{{x}^{n-1}} \right)}{dx}+\dfrac{d\left( {{a}^{2}}{{x}^{n-2}} \right)}{dx}+........\dfrac{d\left( {{a}^{n-1}}x \right)}{dx}+\dfrac{d\left( {{a}^{n}} \right)}{dx}\]

We know that derivative of \[{{x}^{n}}\]is given by the formula \[\dfrac{d({{x}^{n}})}{dx}=n.{{x}^{n-1}}\] and the derivative of constant is given by the formula \[\dfrac{da}{dx}=0\].

The formula for derivative of the product of two functions is given by \[\dfrac{d\left( uv \right)}{dx}=u\dfrac{d(v)}{dx}+v\dfrac{d(u)}{dx}\]

Where \[u,v\]can be functions of \[x\] or constant values.

Thus, we get \[\dfrac{d\left( a{{x}^{n-1}} \right)}{dx}={{x}^{n-1}}\dfrac{d\left( a \right)}{dx}+a\dfrac{d({{x}^{n-1}})}{dx}\]

\[={{x}^{n-1}}(0)+a(n-1)({{x}^{(n-1)-1}})\]

\[=a(n-1)({{x}^{n-2}})\]

By applying the formula for other terms of the equation we get,

\[{{g}^{1}}(x)=n.{{x}^{n-1}}+a(n-1){{x}^{n-2}}+{{a}^{2}}(n-2){{x}^{n-3}}.........+{{a}^{n-1}}(1){{x}^{0}}+0\] ---(1)

We know the formula \[{{x}^{0}}=1\]

\[\therefore {{g}^{1}}(x)=n.{{x}^{n-1}}+a(n-1){{x}^{n-2}}+{{a}^{2}}(n-2){{x}^{n-3}}.........+{{a}^{n-1}}\]

Hence, the derivative of \[{{x}^{n}}+a{{x}^{n-1}}+{{a}^{2}}{{x}^{n-2}}+...+{{a}^{n-1}}x+{{a}^{n}}\]\[=n.{{x}^{n-1}}+a(n-1){{x}^{n-2}}+{{a}^{2}}(n-2){{x}^{n-3}}+...+{{a}^{n-1}}\]

Note: We might mistake the question to be a binomial expansion expression, but the question does not involve the factorial terms of a binomial expansion. The question is an algebraic expression. In the question, since \[a\] is a constant only \[x\] is variable, so the expression should be differentiated with respect to \[x\]. To solve the question, we have to apply the derivative formula of the product of two functions to eliminate the constant values in the derivation, this will ease the procedure of solving. We have to apply basic algebra formulae which are needed in solving the step to arrive at the solution. While solving the question remember to solve it each term wise to avoid overcrowding of the variables.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the stopping potential when the metal with class 12 physics JEE_Main

The momentum of a photon is 2 times 10 16gm cmsec Its class 12 physics JEE_Main

Using the following information to help you answer class 12 chemistry CBSE

Why should electric field lines never cross each other class 12 physics CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How will you bring about the following conversions class 12 chemistry CBSE

Consider a system of two identical particles One of class 11 physics CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

State the laws of reflection of light