Answer

Verified

413.7k+ views

**Hint**: To solve the above problem we have to know the basic derivatives of \[{{\tan }^{-1}}x\]and \[\sqrt{x}\]. After writing the derivatives rewrite the equation with the derivatives of the function.

\[\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}\], \[\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}\]. We can see one function is inside another we have to find internal derivatives.

**:**

__Complete step-by-step answer__The composite function rule shows us a quicker way. If f(x) = h(g(x)) then f (x) = h (g(x)) × g (x). In words: differentiate the 'outside' function, and then multiply by the derivative of the 'inside' function. ... The composite function rule tells us that f (x) = 17(x2 + 1)16 × 2x.

\[y={{\tan }^{-1}}\sqrt{x}\]. . . . . . . . . . . . . . . . . . . . . (a)

\[\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

\[\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

Substituting (1) and (2) as derivatives we get,

Therefore derivative of the given function is,

\[{{y}^{1}}=\dfrac{d}{dx}\left( {{\tan }^{-1}}\sqrt{x} \right)\]

We know the derivative of \[{{\tan }^{-1}}x\]and \[\sqrt{x}\]. By writing the derivatives we get,

Further solving we get the derivative of the function as

\[{{y}^{1}}=\dfrac{1}{1+{{\left( \sqrt{x} \right)}^{2}}}\dfrac{d}{dx}\left( \sqrt{x} \right)\]. . . . . . . . . . . . . . . . . . . (3)

By solving we get,

\[{{y}^{1}}=\dfrac{1}{1+x}\times \dfrac{1}{2\sqrt{x}}\]

Multiplying \[2\sqrt{x}\] with (1+x) and expanding we get,

\[{{y}^{1}}=\dfrac{1}{2\sqrt{x}+2x\sqrt{x}}\]

We know that \[\sqrt{x}\] can be written as \[{{x}^{\dfrac{1}{2}}}\].

By expressing \[\sqrt{x}\] as \[{{x}^{\dfrac{1}{2}}}\] we get,

\[{{y}^{1}}=\dfrac{1}{2{{\left( x \right)}^{\dfrac{1}{2}}}+2x\cdot {{\left( x \right)}^{\dfrac{1}{2}}}}\]

Applying the rule \[x\cdot {{x}^{\dfrac{1}{2}}}={{x}^{\dfrac{3}{2}}}\] we get,

\[{{y}^{1}}=\dfrac{1}{2{{\left( x \right)}^{\dfrac{1}{2}}}+2{{\left( x \right)}^{\dfrac{3}{2}}}}\]

**Note**: In the above problem we have solved the derivative of inverse trigonometric function. In (3) the formation of \[\dfrac{1}{2\sqrt{x}}\] is due to function in a function. In this case we have to find an internal derivative. Further solving for \[\dfrac{dy}{dx}\]made us towards a solution. If we are doing derivative means we are finding the slope of a function. Care should be taken while doing calculations.

Recently Updated Pages

How do you find slope point slope slope intercept standard class 12 maths CBSE

How do you find B1 We know that B2B+2I3 class 12 maths CBSE

How do you integrate int dfracxsqrt x2 + 9 dx class 12 maths CBSE

How do you integrate int left dfracx2 1x + 1 right class 12 maths CBSE

How do you find the critical points of yx2sin x on class 12 maths CBSE

How do you find the general solution to dfracdydx class 12 maths CBSE

Trending doubts

Give 10 examples for herbs , shrubs , climbers , creepers

Difference Between Plant Cell and Animal Cell

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

Write the 6 fundamental rights of India and explain in detail