
Find the derivative of the following function. \[y=2\left| -{{\log }_{0.4}}x \right|+7\]
Answer
232.8k+ views
Hint: To find the derivative of the function given in the question, one must start by
simplifying the given function using properties of logarithmic function and then differentiating the terms given in the function using sum and product rule of differentiation.
To find the derivative of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\], we will differentiate it with respect to the variable\[x\]using some logarithmic properties.
We will first simplify the given function.
We know that\[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].
Substituting\[a=x,b=0.4\], we have\[y=2\left| -{{\log }_{0.4}}x \right|+7=2\left| \dfrac{-\log x}{\log 0.4} \right|+7\].
We will remove the modulus depending if\[x\]is greater or less than 0.
We know\[\log 0.4<0\].
Case 1: If\[x>1\], we have\[\log x>0\] .Thus, we have\[y=f(x)=\dfrac{-2\log x}{\log 0.4}-7\].
We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(1)\]
We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting\[a=-\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=-\dfrac{2}{x\log 0.4}\]. \[...(2)\]
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(3)\]
Substituting equation\[(2)\]and\[(3)\]in equation\[(1)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=-\dfrac{2}{x\log 0.4}\].
Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=-\dfrac{2}{x\log 0.4}\].
Case 2: If\[x<1\], we have\[\log x<0\] .Thus, we have\[y=f(x)=\dfrac{2\log x}{\log 0.4}-7\].
We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(4)\]
We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting\[a=\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=\dfrac{2}{x\log 0.4}\]. \[...(5)\]
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(6)\]
Substituting equation\[(5)\]and\[(6)\]in equation\[(4)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=\dfrac{2}{x\log 0.4}\].
Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=\dfrac{2}{x\log 0.4}\].
Note: The first derivative of any function signifies the slope of the function. Also, we get
different values of derivatives of the function based on different values of\[x\]. Thus, one
should remove modulus carefully considering all the cases.
simplifying the given function using properties of logarithmic function and then differentiating the terms given in the function using sum and product rule of differentiation.
To find the derivative of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\], we will differentiate it with respect to the variable\[x\]using some logarithmic properties.
We will first simplify the given function.
We know that\[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].
Substituting\[a=x,b=0.4\], we have\[y=2\left| -{{\log }_{0.4}}x \right|+7=2\left| \dfrac{-\log x}{\log 0.4} \right|+7\].
We will remove the modulus depending if\[x\]is greater or less than 0.
We know\[\log 0.4<0\].
Case 1: If\[x>1\], we have\[\log x>0\] .Thus, we have\[y=f(x)=\dfrac{-2\log x}{\log 0.4}-7\].
We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(1)\]
We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting\[a=-\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=-\dfrac{2}{x\log 0.4}\]. \[...(2)\]
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(3)\]
Substituting equation\[(2)\]and\[(3)\]in equation\[(1)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=-\dfrac{2}{x\log 0.4}\].
Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=-\dfrac{2}{x\log 0.4}\].
Case 2: If\[x<1\], we have\[\log x<0\] .Thus, we have\[y=f(x)=\dfrac{2\log x}{\log 0.4}-7\].
We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(4)\]
We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting\[a=\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=\dfrac{2}{x\log 0.4}\]. \[...(5)\]
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(6)\]
Substituting equation\[(5)\]and\[(6)\]in equation\[(4)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=\dfrac{2}{x\log 0.4}\].
Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=\dfrac{2}{x\log 0.4}\].
Note: The first derivative of any function signifies the slope of the function. Also, we get
different values of derivatives of the function based on different values of\[x\]. Thus, one
should remove modulus carefully considering all the cases.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

