
How do you find the derivative of $\log {{x}^{2}}$?
Answer
477.9k+ views
Hint: We recall the definition of composite function $gof\left( x \right)=g\left( f\left( x \right) \right)$. We recall the chain rule of differentiation $\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}$ where $y=gof$ and $u=f\left( x \right)$. We first find $u=f\left( x \right)$ as the function inside the bracket and $y$ as the given function and then differentiate using chain rule. We then solve alternatively using the first principle as $\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$.
Complete step-by-step solution:
If the functions $f\left( x \right),g\left( x \right)$ are defined within sets $f:A\to B$ and $g:B\to C$ then the composite function from A to C is defend as $g\left( f\left( x \right) \right)$ within sets $gof:A\to C$. If we denote $g\left( f\left( x \right) \right)=y$ and $f\left( x \right)=u$ then we can differentiate the composite function using chain rule as
\[\dfrac{d}{dx}g\left( f\left( x \right) \right)=\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}\]
We are asked to differentiate the function $\log x=\log \left( {{x}^{2}} \right)$. We see that it is a composite function which is made by a polynomial function that is ${{x}^{2}}$ and a logarithmic function that is $\log x$. Let us assign the function within the bracket as $f\left( x \right)={{x}^{2}}=u$ and $g\left( x \right)=\log x$. So we have $g\left( f\left( x \right) \right)=g\left( {{x}^{2}} \right)=\log \left( {{x}^{2}} \right)=y$. We differentiate using chain rule to have;
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} \\
& \Rightarrow \dfrac{d}{dx}y=\dfrac{d}{du}y\times \dfrac{d}{dx}u \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\dfrac{d}{d\left( {{x}^{2}} \right)}\left( \log {{x}^{2}} \right)\times \dfrac{d}{dx}\left( {{x}^{2}} \right) \\
\end{align}\]
We know that from standard differentiation of logarithmic function $\dfrac{d}{dt}\log t=\dfrac{1}{t}$. We use it for $t={{x}^{2}}$ in the above step to have
\[\Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\dfrac{1}{{{x}^{2}}}\times \dfrac{d}{dx}\left( {{x}^{2}} \right)\]
We know that from standard differentiation of polynomial function as $\dfrac{d}{dt}{{t}^{n}}=n{{t}^{n-1}}$ where $n$ is any real number. We use it for $t=x,n=2$ in the above step to have
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\dfrac{1}{{{x}^{2}}}\times 2x \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\dfrac{2}{x} \\
\end{align}\]
Alternative Method: We can find the derivative using the first principle. We know that derivative using the first principle for any continuous function $f\left( x \right)$ at any point in the domain of $f$ is obtained from the following working rule
\[\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\]
We put $f\left( x \right)=\log {{x}^{2}}$ in the working rule as
\[\dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{\log {{\left( x+h \right)}^{2}}-\log {{x}^{2}}}{h}\]
We use the logarithmic identity involving power $m{{\log }_{b}}x={{\log }_{b}}{{x}^{m}}$ with $m\ne 0$ a in the numerator of the above step for $x=x+h,m=2$ and then fro $x=x,m=2$ to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{2\log \left( x+h \right)-2\log x}{h} \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{2\left( \log \left( x+h \right)-\log x \right)}{h} \\
\end{align}\]
We also know the logarithmic identity involving quotient $\log \left( \dfrac{m}{n} \right)=\log m-\log n$ for $m=x+h,n=x$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{2\log \left( \dfrac{x+h}{x} \right)}{h} \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{2\log \left( 1+\dfrac{h}{x} \right)}{h} \\
\end{align}\]
We multiply $\dfrac{1}{x}$in the above step in the numerator and denominator of the limit to have ;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{2\times \dfrac{1}{x}\log \left( 1+\dfrac{h}{x} \right)}{h\times \dfrac{1}{x}} \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{\dfrac{2}{x}\log \left( 1+\dfrac{h}{x} \right)}{\dfrac{h}{x}} \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\dfrac{2}{x}\displaystyle \lim_{h \to 0}\dfrac{\log \left( 1+\dfrac{h}{x} \right)}{\dfrac{h}{x}} \\
\end{align}\]
We use the standard limit $\displaystyle \lim_{t\to 0}\dfrac{\log \left( 1+t \right)}{t}=1$ for $t=\dfrac{h}{x}$ in the above step to have
\[\Rightarrow \dfrac{d}{dx}\left( \log {{x}^{2}} \right)=\dfrac{2}{x}\times 1=\dfrac{2}{x}\]
Note: We note that we can directly use the logarithmic identity involving power $m{{\log }_{b}}x={{\log }_{b}}{{x}^{m}}$ to have $\log {{x}^{2}}=2\log x$ and then we can differentiate $2\log x$ with respect to $x$ to have $\dfrac{d}{dx}\left( \log {{x}^{2}} \right)=\dfrac{d}{dx}\left( 2\log x \right)=2\dfrac{d}{dx}\log x=2\times \dfrac{1}{x}=\dfrac{2}{x}$ . We note that logarithmic function takes only positive real numbers as input. Since the range of ${{x}^{2}}$ is the non-negative real number set which includes 0, the given function $\log {{x}^{2}}$ will be defined as $\log {{x}^{2}}:{{\mathsf{\mathbb{R}}}^{+}}\to {{\mathsf{\mathbb{R}}}^{+}}$.
Complete step-by-step solution:
If the functions $f\left( x \right),g\left( x \right)$ are defined within sets $f:A\to B$ and $g:B\to C$ then the composite function from A to C is defend as $g\left( f\left( x \right) \right)$ within sets $gof:A\to C$. If we denote $g\left( f\left( x \right) \right)=y$ and $f\left( x \right)=u$ then we can differentiate the composite function using chain rule as
\[\dfrac{d}{dx}g\left( f\left( x \right) \right)=\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}\]
We are asked to differentiate the function $\log x=\log \left( {{x}^{2}} \right)$. We see that it is a composite function which is made by a polynomial function that is ${{x}^{2}}$ and a logarithmic function that is $\log x$. Let us assign the function within the bracket as $f\left( x \right)={{x}^{2}}=u$ and $g\left( x \right)=\log x$. So we have $g\left( f\left( x \right) \right)=g\left( {{x}^{2}} \right)=\log \left( {{x}^{2}} \right)=y$. We differentiate using chain rule to have;
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} \\
& \Rightarrow \dfrac{d}{dx}y=\dfrac{d}{du}y\times \dfrac{d}{dx}u \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\dfrac{d}{d\left( {{x}^{2}} \right)}\left( \log {{x}^{2}} \right)\times \dfrac{d}{dx}\left( {{x}^{2}} \right) \\
\end{align}\]
We know that from standard differentiation of logarithmic function $\dfrac{d}{dt}\log t=\dfrac{1}{t}$. We use it for $t={{x}^{2}}$ in the above step to have
\[\Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\dfrac{1}{{{x}^{2}}}\times \dfrac{d}{dx}\left( {{x}^{2}} \right)\]
We know that from standard differentiation of polynomial function as $\dfrac{d}{dt}{{t}^{n}}=n{{t}^{n-1}}$ where $n$ is any real number. We use it for $t=x,n=2$ in the above step to have
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\dfrac{1}{{{x}^{2}}}\times 2x \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\dfrac{2}{x} \\
\end{align}\]
Alternative Method: We can find the derivative using the first principle. We know that derivative using the first principle for any continuous function $f\left( x \right)$ at any point in the domain of $f$ is obtained from the following working rule
\[\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\]
We put $f\left( x \right)=\log {{x}^{2}}$ in the working rule as
\[\dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{\log {{\left( x+h \right)}^{2}}-\log {{x}^{2}}}{h}\]
We use the logarithmic identity involving power $m{{\log }_{b}}x={{\log }_{b}}{{x}^{m}}$ with $m\ne 0$ a in the numerator of the above step for $x=x+h,m=2$ and then fro $x=x,m=2$ to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{2\log \left( x+h \right)-2\log x}{h} \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{2\left( \log \left( x+h \right)-\log x \right)}{h} \\
\end{align}\]
We also know the logarithmic identity involving quotient $\log \left( \dfrac{m}{n} \right)=\log m-\log n$ for $m=x+h,n=x$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{2\log \left( \dfrac{x+h}{x} \right)}{h} \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{2\log \left( 1+\dfrac{h}{x} \right)}{h} \\
\end{align}\]
We multiply $\dfrac{1}{x}$in the above step in the numerator and denominator of the limit to have ;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{2\times \dfrac{1}{x}\log \left( 1+\dfrac{h}{x} \right)}{h\times \dfrac{1}{x}} \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\displaystyle \lim_{h \to 0}\dfrac{\dfrac{2}{x}\log \left( 1+\dfrac{h}{x} \right)}{\dfrac{h}{x}} \\
& \Rightarrow \dfrac{d}{dx}\log {{x}^{2}}=\dfrac{2}{x}\displaystyle \lim_{h \to 0}\dfrac{\log \left( 1+\dfrac{h}{x} \right)}{\dfrac{h}{x}} \\
\end{align}\]
We use the standard limit $\displaystyle \lim_{t\to 0}\dfrac{\log \left( 1+t \right)}{t}=1$ for $t=\dfrac{h}{x}$ in the above step to have
\[\Rightarrow \dfrac{d}{dx}\left( \log {{x}^{2}} \right)=\dfrac{2}{x}\times 1=\dfrac{2}{x}\]
Note: We note that we can directly use the logarithmic identity involving power $m{{\log }_{b}}x={{\log }_{b}}{{x}^{m}}$ to have $\log {{x}^{2}}=2\log x$ and then we can differentiate $2\log x$ with respect to $x$ to have $\dfrac{d}{dx}\left( \log {{x}^{2}} \right)=\dfrac{d}{dx}\left( 2\log x \right)=2\dfrac{d}{dx}\log x=2\times \dfrac{1}{x}=\dfrac{2}{x}$ . We note that logarithmic function takes only positive real numbers as input. Since the range of ${{x}^{2}}$ is the non-negative real number set which includes 0, the given function $\log {{x}^{2}}$ will be defined as $\log {{x}^{2}}:{{\mathsf{\mathbb{R}}}^{+}}\to {{\mathsf{\mathbb{R}}}^{+}}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
