How do you find the derivative of $f(x)=\sqrt{\sin x\left( 2x \right)}?$
Answer
Verified
437.4k+ views
Hint: As derivative of a function of real variable measures the sensitivity to change of the function value with respect to change in its argument. Derivatives are a fundamental tool of calculus.
Use chain rule to find the derivative of $f(x)=\sqrt{\sin \left( 2x \right)}$
Chain Rule:- $fg'(x).g'(x)$
Example: $\sin (5x)$ a competitive function.
$f(x)=\sin x\Rightarrow f'(x)=\cos x$
$g(x)=\sin x\Rightarrow g'(x)=5$
So, the derivative will be equal to
$\cos \left( 5x \right)5$
Complete step by step solution:
You know that, given function is
$f(x)=\sqrt{\sin \left( 2x \right)}$
Firstly, let $y=\sqrt{\sin \left( 2x \right)}$
And let $u=\sin \left( 2x \right)$
This mean $y={{u}^{\dfrac{1}{2}}}$
Therefore,
$\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}{{u}^{\dfrac{-1}{2}}}.2\cos \left( 2x \right)$
Which implies, as ${{u}^{\dfrac{-1}{2}}}=-\sqrt{u}$ therefore as you transfer to denominator it gets reprobated into $\sqrt{4}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}.\dfrac{2\cos 2x}{\sqrt{u}}$
And $'2'$ of denominator and $2$ of $'2\cos 2x'$ gets canceled.
Therefore, simplified equation will be
$\dfrac{dy}{dx}=\dfrac{\cos 2x}{\sqrt{u}}$
Replace $u=\sin 2x$ to get,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\cos 2x}{\sqrt{\sin 2x}}$
Additional Information:
The chain rule tells us how to find the derivative of composite function.
The chain rule, formula is,
$\dfrac{d}{dx}\left[ f\left( f(x) \right) \right]=f'(g(x)g'(x))$
A function is composite if you can write it as $f(g(x))$. In other words, it is a function within a function, or a function of function. For example: $\cos \left( {{x}^{2}} \right)$ is composite because if we let $f(x)=\cos (x')$ and $g(x)={{x}^{2}}$ then $\cos \left( {{x}^{2}} \right)=f\left( g\left( x \right) \right)$
$'g'$ is a function within $'f'$, so you call $'g'$ inner function and $'f'$ outer function. On the outer hand, $\cos (x).{{x}^{2}}$ is not a composite function. It is a product of $f(x)=\cos (x)$ and $g(x)={{x}^{2}}$ but neither function is within the other one. Usually, The only way to differentiate a composite function is to recognize that a function is composite and that the chain rule must be applied, You will not be able to differentiate correctly.
Note: Apply chain rule in given function. In some cases if you recognize composite functions you may get the inner and outer functions wrong. This will give you a derivative. For example, in the composite function ${{\cos }^{2}}(x)$ the outer function is ${{x}^{2}}$ and the inner function is $\cos (x)$ the outer function is ${{x}^{2}}$ and the inner function is $\cos (x)$ Sometimes you may get confused by this type of question and think $\cos (x)$ is the outer function.
Use chain rule to find the derivative of $f(x)=\sqrt{\sin \left( 2x \right)}$
Chain Rule:- $fg'(x).g'(x)$
Example: $\sin (5x)$ a competitive function.
$f(x)=\sin x\Rightarrow f'(x)=\cos x$
$g(x)=\sin x\Rightarrow g'(x)=5$
So, the derivative will be equal to
$\cos \left( 5x \right)5$
Complete step by step solution:
You know that, given function is
$f(x)=\sqrt{\sin \left( 2x \right)}$
Firstly, let $y=\sqrt{\sin \left( 2x \right)}$
And let $u=\sin \left( 2x \right)$
This mean $y={{u}^{\dfrac{1}{2}}}$
Therefore,
$\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}{{u}^{\dfrac{-1}{2}}}.2\cos \left( 2x \right)$
Which implies, as ${{u}^{\dfrac{-1}{2}}}=-\sqrt{u}$ therefore as you transfer to denominator it gets reprobated into $\sqrt{4}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}.\dfrac{2\cos 2x}{\sqrt{u}}$
And $'2'$ of denominator and $2$ of $'2\cos 2x'$ gets canceled.
Therefore, simplified equation will be
$\dfrac{dy}{dx}=\dfrac{\cos 2x}{\sqrt{u}}$
Replace $u=\sin 2x$ to get,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\cos 2x}{\sqrt{\sin 2x}}$
Additional Information:
The chain rule tells us how to find the derivative of composite function.
The chain rule, formula is,
$\dfrac{d}{dx}\left[ f\left( f(x) \right) \right]=f'(g(x)g'(x))$
A function is composite if you can write it as $f(g(x))$. In other words, it is a function within a function, or a function of function. For example: $\cos \left( {{x}^{2}} \right)$ is composite because if we let $f(x)=\cos (x')$ and $g(x)={{x}^{2}}$ then $\cos \left( {{x}^{2}} \right)=f\left( g\left( x \right) \right)$
$'g'$ is a function within $'f'$, so you call $'g'$ inner function and $'f'$ outer function. On the outer hand, $\cos (x).{{x}^{2}}$ is not a composite function. It is a product of $f(x)=\cos (x)$ and $g(x)={{x}^{2}}$ but neither function is within the other one. Usually, The only way to differentiate a composite function is to recognize that a function is composite and that the chain rule must be applied, You will not be able to differentiate correctly.
Note: Apply chain rule in given function. In some cases if you recognize composite functions you may get the inner and outer functions wrong. This will give you a derivative. For example, in the composite function ${{\cos }^{2}}(x)$ the outer function is ${{x}^{2}}$ and the inner function is $\cos (x)$ the outer function is ${{x}^{2}}$ and the inner function is $\cos (x)$ Sometimes you may get confused by this type of question and think $\cos (x)$ is the outer function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE