Answer
Verified
424.8k+ views
Hint: In this problem we need to calculate the derivative of the given function. We can observe that the given function is a fraction with numerator $\sin x$, denominator $1+\cos x$. In differentiation we have the formula $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{{{u}^{'}}v-u{{v}^{'}}}{{{v}^{2}}}$. So, we will compare the given function with $\dfrac{u}{v}$ and write the values of $u$, $v$. After knowing the values of $u$, $v$ we will differentiate the both the values to get the values of ${{u}^{'}}$, ${{v}^{'}}$. After knowing the value of ${{u}^{'}}$, ${{v}^{'}}$ we will use the division’s derivative formula and simplify the equation to get the required result.
Complete step by step solution:
Given that, $\dfrac{\sin x}{1+\cos x}$.
Comparing the above fraction with $\dfrac{u}{v}$, then we will get
$u=\sin x$, $v=1+\cos x$.
Considering the value $u=\sin x$.
Differentiating the above equation with respect to $x$, then we will get
$\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( \sin x \right)$
We have the differentiation formula $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, then we will have
$\Rightarrow {{u}^{'}}=\cos x$
Considering the value $v=1+\cos x$.
Differentiating the above equation with respect to $x$, then we will get
$\Rightarrow \dfrac{dv}{dx}=\dfrac{d}{dx}\left( 1+\cos x \right)$
We know that the differentiation of constant is zero and $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$, then we will have
$\Rightarrow {{v}^{'}}=-\sin x$
Now the derivative of the given fraction is given by
$\begin{align}
& \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{{{u}^{'}}v-u{{v}^{'}}}{{{v}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{\cos x\left( 1+\cos x \right)-\sin x\left( -\sin x \right)}{{{\left( 1+\cos x \right)}^{2}}} \\
\end{align}$
Simplifying the above equation, then we will have
$\Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{\cos x+{{\cos }^{2}}x+{{\sin }^{2}}x}{{{\left( 1+\cos x \right)}^{2}}}$
We have the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, then the above equation is modified as
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{1+\cos x}{{{\left( 1+\cos x \right)}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{1}{1+\cos x} \\
\end{align}$
Hence the derivative of the given equation $\dfrac{\sin x}{1+\cos x}$ is $\dfrac{1}{1+\cos x}$.
Note: In this problem we can observe that ${{v}^{'}}=-\sin x=-u$. For this type of equation calculation of the integration is also simple. We have the integration formula $\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\log \left| f\left( x \right) \right|+C$. We will use this formula and simplify it to get the integration value.
Complete step by step solution:
Given that, $\dfrac{\sin x}{1+\cos x}$.
Comparing the above fraction with $\dfrac{u}{v}$, then we will get
$u=\sin x$, $v=1+\cos x$.
Considering the value $u=\sin x$.
Differentiating the above equation with respect to $x$, then we will get
$\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( \sin x \right)$
We have the differentiation formula $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, then we will have
$\Rightarrow {{u}^{'}}=\cos x$
Considering the value $v=1+\cos x$.
Differentiating the above equation with respect to $x$, then we will get
$\Rightarrow \dfrac{dv}{dx}=\dfrac{d}{dx}\left( 1+\cos x \right)$
We know that the differentiation of constant is zero and $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$, then we will have
$\Rightarrow {{v}^{'}}=-\sin x$
Now the derivative of the given fraction is given by
$\begin{align}
& \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{{{u}^{'}}v-u{{v}^{'}}}{{{v}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{\cos x\left( 1+\cos x \right)-\sin x\left( -\sin x \right)}{{{\left( 1+\cos x \right)}^{2}}} \\
\end{align}$
Simplifying the above equation, then we will have
$\Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{\cos x+{{\cos }^{2}}x+{{\sin }^{2}}x}{{{\left( 1+\cos x \right)}^{2}}}$
We have the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, then the above equation is modified as
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{1+\cos x}{{{\left( 1+\cos x \right)}^{2}}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{\sin x}{1+\cos x} \right)=\dfrac{1}{1+\cos x} \\
\end{align}$
Hence the derivative of the given equation $\dfrac{\sin x}{1+\cos x}$ is $\dfrac{1}{1+\cos x}$.
Note: In this problem we can observe that ${{v}^{'}}=-\sin x=-u$. For this type of equation calculation of the integration is also simple. We have the integration formula $\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\log \left| f\left( x \right) \right|+C$. We will use this formula and simplify it to get the integration value.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE