Find the curved surface area of the frustum with slant height of 4 cm and the perimeters (circumference) of its circular ends are 18 cm and 6 cm.
Last updated date: 22nd Mar 2023
•
Total views: 306.3k
•
Views today: 6.84k
Answer
306.3k+ views
Hint: We need to know the formula of frustum of cone for solving the above problem. The curved surface area of frustum of cone is given by $\pi (r+R)l$ (as shown in the figure below). Here, r and R are the radii of two circular faces of the frustum. Also, l is the slant height of the frustum.
Complete step-by-step answer:
From the question, the perimeters of the circular ends are 18 cm and 6 cm. We know that the formula of the perimeter of circular ends is $2\pi r $(where r is the radius of the circular end). Utilizing this formula-
$\begin{align}
& 2\pi r=6 \\
& r=\dfrac{3}{\pi } \\
\end{align}$
This is the radius of circle with smaller radius
Similarly, for larger circular end,
\[\begin{align}
& 2\pi R=18 \\
& R=\dfrac{9}{\pi } \\
\end{align}\]
This is the radius of circle with larger radius
Now, we use the formula given in the hint,
Curved surface area of frustum = $\pi (r+R)l$
Now, we put the values of r and R, we calculated in this equation
$=\pi \left( \dfrac{3}{\pi }+\dfrac{9}{\pi } \right)l$
Further, the value of slant height (that is l) is also given as 4 cm. Thus, substituting this value and then solving-
$\begin{align}
& =\pi \left( \dfrac{3}{\pi }+\dfrac{9}{\pi } \right)4 \\
& =\pi \left( \dfrac{3+9}{\pi } \right)4 \\
& =\pi \left( \dfrac{12}{\pi } \right)4 \\
& =48 \\
\end{align}$
Thus, the curved surface area of the given frustum is $48\text{ c}{{\text{m}}^{2}}$. (The units are $\text{c}{{\text{m}}^{2}}$ because all the units of radii and slant height are in cm)
Note: While solving the problem, keep the values of r and R in terms of $\pi $. This way while calculating the curved surface area, we can cancel the $\pi $ terms from the numerator and the denominator avoiding huge calculations. A common mistake in these types of problems is the inability to understand the difference between total surface area and curved surface area. One should remember that curved surface area is the area of the solid shape excluding the top and bottom cross section areas. The common mistake made in these problems is forgetting to put the units of curved surface area (in this case, $\text{c}{{\text{m}}^{2}}$). Always remember to write the final answer with units.

Complete step-by-step answer:
From the question, the perimeters of the circular ends are 18 cm and 6 cm. We know that the formula of the perimeter of circular ends is $2\pi r $(where r is the radius of the circular end). Utilizing this formula-
$\begin{align}
& 2\pi r=6 \\
& r=\dfrac{3}{\pi } \\
\end{align}$
This is the radius of circle with smaller radius
Similarly, for larger circular end,
\[\begin{align}
& 2\pi R=18 \\
& R=\dfrac{9}{\pi } \\
\end{align}\]
This is the radius of circle with larger radius
Now, we use the formula given in the hint,
Curved surface area of frustum = $\pi (r+R)l$
Now, we put the values of r and R, we calculated in this equation
$=\pi \left( \dfrac{3}{\pi }+\dfrac{9}{\pi } \right)l$
Further, the value of slant height (that is l) is also given as 4 cm. Thus, substituting this value and then solving-
$\begin{align}
& =\pi \left( \dfrac{3}{\pi }+\dfrac{9}{\pi } \right)4 \\
& =\pi \left( \dfrac{3+9}{\pi } \right)4 \\
& =\pi \left( \dfrac{12}{\pi } \right)4 \\
& =48 \\
\end{align}$
Thus, the curved surface area of the given frustum is $48\text{ c}{{\text{m}}^{2}}$. (The units are $\text{c}{{\text{m}}^{2}}$ because all the units of radii and slant height are in cm)
Note: While solving the problem, keep the values of r and R in terms of $\pi $. This way while calculating the curved surface area, we can cancel the $\pi $ terms from the numerator and the denominator avoiding huge calculations. A common mistake in these types of problems is the inability to understand the difference between total surface area and curved surface area. One should remember that curved surface area is the area of the solid shape excluding the top and bottom cross section areas. The common mistake made in these problems is forgetting to put the units of curved surface area (in this case, $\text{c}{{\text{m}}^{2}}$). Always remember to write the final answer with units.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
