
Find the correct option
If $u = \log ({x^3} + {y^3} + {z^3} - 3xyz)$ , then $\left(\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}\right)(x + y + z)$ is equal to
A. 0
B. 1
C. 2
D. 3
Answer
232.8k+ views
Hint: Using relevant differentiation rules of logarithm function and algebraic function in the form of $x^n$, each derivative given in the expression is calculated separately one by one and putting those calculated values, the expression is simplified using suitable algebraic formulae of factorization to find the final value of the expression and to choose the correct option.
Formula Used:
The following differentiation and algebraic formulas have been used to simplify the given expression:
1. $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ , where, $v$ is a function of $x$.
2. $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
3. ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$
Complete step by step solution:
We have been given that $u = \log ({x^3} + {y^3} + {z^3} - 3xyz)$ .
We have to find out the value of the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ .
The above expression comprises three derivatives and one algebraic expression.
We will find out the value of each derivative one by one.
First, to find $\dfrac{{du}}{{dx}}$ , we will consider $y,z$ as constants and $u$ as a function of $x$ .
So, $\dfrac{{du}}{{dx}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dx}} = \dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dx}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{x^2} - 3yz)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Similarly, to find $\dfrac{{du}}{{dy}}$ , we will consider $z,x$ as constants and $u$ as a function of $y$ .
So, $\dfrac{{du}}{{dy}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dy}} = \dfrac{{d(\log v)}}{{dy}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dy}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dy}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{y^2} - 3zx)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
And to find $\dfrac{{du}}{{dz}}$ , we will consider $x,y$ as constants and $u$ as a function of $z$ .
So, $\dfrac{{du}}{{dz}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dz}} = \dfrac{{d(\log v)}}{{dz}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dz}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dz}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{z^2} - 3xy)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Now, substituting the above calculated values of the derivatives in the expression, we have
$\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z) = \left[ {\dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}} \right] \times (x + y + z)$$ = \dfrac{{3({x^2} + {y^2} + {z^2} - xy - yz - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (x + y + z)$
$ = \dfrac{{3({x^3} + {y^3} + {z^3} - 3xyz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$ [Since ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$]
$= 3$
So, the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ is equal to 3.
Option ‘D’ is correct
Note: The formula $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ is applied to find the derivative of the logarithm function in case of base $e$ , but, when, the base is different say $a$, then the formula applied will be $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{1}{{\log a}} \times \dfrac{{dv}}{{dx}}$.
Formula Used:
The following differentiation and algebraic formulas have been used to simplify the given expression:
1. $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ , where, $v$ is a function of $x$.
2. $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
3. ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$
Complete step by step solution:
We have been given that $u = \log ({x^3} + {y^3} + {z^3} - 3xyz)$ .
We have to find out the value of the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ .
The above expression comprises three derivatives and one algebraic expression.
We will find out the value of each derivative one by one.
First, to find $\dfrac{{du}}{{dx}}$ , we will consider $y,z$ as constants and $u$ as a function of $x$ .
So, $\dfrac{{du}}{{dx}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dx}} = \dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dx}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{x^2} - 3yz)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Similarly, to find $\dfrac{{du}}{{dy}}$ , we will consider $z,x$ as constants and $u$ as a function of $y$ .
So, $\dfrac{{du}}{{dy}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dy}} = \dfrac{{d(\log v)}}{{dy}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dy}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dy}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{y^2} - 3zx)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
And to find $\dfrac{{du}}{{dz}}$ , we will consider $x,y$ as constants and $u$ as a function of $z$ .
So, $\dfrac{{du}}{{dz}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dz}} = \dfrac{{d(\log v)}}{{dz}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dz}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dz}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{z^2} - 3xy)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Now, substituting the above calculated values of the derivatives in the expression, we have
$\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z) = \left[ {\dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}} \right] \times (x + y + z)$$ = \dfrac{{3({x^2} + {y^2} + {z^2} - xy - yz - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (x + y + z)$
$ = \dfrac{{3({x^3} + {y^3} + {z^3} - 3xyz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$ [Since ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$]
$= 3$
So, the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ is equal to 3.
Option ‘D’ is correct
Note: The formula $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ is applied to find the derivative of the logarithm function in case of base $e$ , but, when, the base is different say $a$, then the formula applied will be $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{1}{{\log a}} \times \dfrac{{dv}}{{dx}}$.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

