Answer
Verified
491.4k+ views
Hint: Write the equation of the common chord on the two circles and find the points of intersection of the two circles. Find the length of the chord, which is the diameter of the circle and the end point of chords can be used to find the centre of the circle. Write equation of circle using diameter of circle and its centre.
Complete step-by-step answer:
We have two circles whose equations are \[{{S}_{1}}:{{x}^{2}}+{{y}^{2}}+2x+3y+1=0\] and \[{{S}_{2}}:{{x}^{2}}+{{y}^{2}}+4x+3y+2=0\]. We want to find the common chord of these two circles.
We know that the equation of chords joining two circles of the form \[{{x}^{2}}+{{y}^{2}}+2{{g}_{1}}x+2{{f}_{1}}y+{{c}_{1}}=0\] and \[{{x}^{2}}+{{y}^{2}}+2{{g}_{2}}x+2{{f}_{2}}y+{{c}_{2}}=0\] is \[2\left( {{g}_{1}}-{{g}_{2}} \right)x+2\left( {{f}_{1}}-{{f}_{2}} \right)y+{{c}_{1}}-{{c}_{2}}=0\].
Substituting \[{{g}_{1}}=1,{{f}_{1}}=\dfrac{3}{2},{{g}_{2}}=2,{{f}_{2}}=\dfrac{3}{2},{{c}_{1}}=1,{{c}_{2}}=2\] in the above equation, we get \[2\left( 1-2 \right)x+2\left( \dfrac{3}{2}-\dfrac{3}{2} \right)y+1-2=0\] as the equation of common chords of the given circle.
Thus, we have \[2x+1=0\] as the equation of common chords.
We know that the equation of circle whose diameter is the common chord of the two given circles is \[{{S}_{1}}+\lambda {{S}_{2}}=0\].
Thus, we have \[{{x}^{2}}+{{y}^{2}}+2x+3y+1+\lambda \left( {{x}^{2}}+{{y}^{2}}+4x+3y+2 \right)=0\].
Now simplifying the above equation, we get \[{{x}^{2}}\left( 1+\lambda \right)+{{y}^{2}}\left( 1+\lambda \right)+x\left( 2+4\lambda \right)+y\left( 3+3\lambda \right)+1+2\lambda =0\].
We know that the centre of this circle passes through the chord which is the diameter of this circle.
We know that the centre of circle with equation of the form \[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\] is \[\left( -g,-f \right)\]
Thus, the centre of our circle \[{{x}^{2}}\left( 1+\lambda \right)+{{y}^{2}}\left( 1+\lambda \right)+x\left( 2+4\lambda \right)+y\left( 3+3\lambda \right)+1+2\lambda =0\] is \[\left( -\dfrac{2+4\lambda }{2},-\dfrac{3+3\lambda }{2} \right)\].
We know that this centre passes through the chord \[2x+1=0\].
Substituting the centre of circle in equation of chord, we get \[2\left( -\dfrac{2+4\lambda }{2} \right)+1=0\]
On further solving, we get
\[\begin{align}
& \Rightarrow -2-4\lambda +1=0 \\
& \Rightarrow 4\lambda =-1 \\
& \Rightarrow \lambda =\dfrac{-1}{4} \\
\end{align}\]
Substituting the value \[\lambda =\dfrac{-1}{4}\] in the equation of circle \[{{x}^{2}}\left( 1+\lambda \right)+{{y}^{2}}\left( 1+\lambda \right)+x\left( 2+4\lambda \right)+y\left( 3+3\lambda \right)+1+2\lambda =0\], we get \[{{x}^{2}}\left( 1+\dfrac{-1}{4} \right)+{{y}^{2}}\left( 1+\dfrac{-1}{4} \right)+x\left( 2+4\left( \dfrac{-1}{4} \right) \right)+y\left( 3+3\left( \dfrac{-1}{4} \right) \right)+1+2\left( \dfrac{-1}{4} \right)=0\].
On further solving, we have \[\dfrac{3{{x}^{2}}}{4}+\dfrac{3{{y}^{2}}}{4}+x+\dfrac{9y}{4}+\dfrac{1}{2}=0\].
Hence, we get \[3{{x}^{2}}+3{{y}^{2}}+4x+9y+2=0\] as the equation of circle whose diameter is the common chord of the circles \[{{S}_{1}}:{{x}^{2}}+{{y}^{2}}+2x+3y+1=0\] and \[{{S}_{2}}:{{x}^{2}}+{{y}^{2}}+4x+3y+2=0\].
Note: One needs to know the formula for writing the equation of the common chord of two circles. Otherwise, we can also solve this question by solving the equation of two circles to find the common chord. One must carefully perform the calculations; otherwise, you will get an incorrect answer.
Complete step-by-step answer:
We have two circles whose equations are \[{{S}_{1}}:{{x}^{2}}+{{y}^{2}}+2x+3y+1=0\] and \[{{S}_{2}}:{{x}^{2}}+{{y}^{2}}+4x+3y+2=0\]. We want to find the common chord of these two circles.
We know that the equation of chords joining two circles of the form \[{{x}^{2}}+{{y}^{2}}+2{{g}_{1}}x+2{{f}_{1}}y+{{c}_{1}}=0\] and \[{{x}^{2}}+{{y}^{2}}+2{{g}_{2}}x+2{{f}_{2}}y+{{c}_{2}}=0\] is \[2\left( {{g}_{1}}-{{g}_{2}} \right)x+2\left( {{f}_{1}}-{{f}_{2}} \right)y+{{c}_{1}}-{{c}_{2}}=0\].
Substituting \[{{g}_{1}}=1,{{f}_{1}}=\dfrac{3}{2},{{g}_{2}}=2,{{f}_{2}}=\dfrac{3}{2},{{c}_{1}}=1,{{c}_{2}}=2\] in the above equation, we get \[2\left( 1-2 \right)x+2\left( \dfrac{3}{2}-\dfrac{3}{2} \right)y+1-2=0\] as the equation of common chords of the given circle.
Thus, we have \[2x+1=0\] as the equation of common chords.
We know that the equation of circle whose diameter is the common chord of the two given circles is \[{{S}_{1}}+\lambda {{S}_{2}}=0\].
Thus, we have \[{{x}^{2}}+{{y}^{2}}+2x+3y+1+\lambda \left( {{x}^{2}}+{{y}^{2}}+4x+3y+2 \right)=0\].
Now simplifying the above equation, we get \[{{x}^{2}}\left( 1+\lambda \right)+{{y}^{2}}\left( 1+\lambda \right)+x\left( 2+4\lambda \right)+y\left( 3+3\lambda \right)+1+2\lambda =0\].
We know that the centre of this circle passes through the chord which is the diameter of this circle.
We know that the centre of circle with equation of the form \[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\] is \[\left( -g,-f \right)\]
Thus, the centre of our circle \[{{x}^{2}}\left( 1+\lambda \right)+{{y}^{2}}\left( 1+\lambda \right)+x\left( 2+4\lambda \right)+y\left( 3+3\lambda \right)+1+2\lambda =0\] is \[\left( -\dfrac{2+4\lambda }{2},-\dfrac{3+3\lambda }{2} \right)\].
We know that this centre passes through the chord \[2x+1=0\].
Substituting the centre of circle in equation of chord, we get \[2\left( -\dfrac{2+4\lambda }{2} \right)+1=0\]
On further solving, we get
\[\begin{align}
& \Rightarrow -2-4\lambda +1=0 \\
& \Rightarrow 4\lambda =-1 \\
& \Rightarrow \lambda =\dfrac{-1}{4} \\
\end{align}\]
Substituting the value \[\lambda =\dfrac{-1}{4}\] in the equation of circle \[{{x}^{2}}\left( 1+\lambda \right)+{{y}^{2}}\left( 1+\lambda \right)+x\left( 2+4\lambda \right)+y\left( 3+3\lambda \right)+1+2\lambda =0\], we get \[{{x}^{2}}\left( 1+\dfrac{-1}{4} \right)+{{y}^{2}}\left( 1+\dfrac{-1}{4} \right)+x\left( 2+4\left( \dfrac{-1}{4} \right) \right)+y\left( 3+3\left( \dfrac{-1}{4} \right) \right)+1+2\left( \dfrac{-1}{4} \right)=0\].
On further solving, we have \[\dfrac{3{{x}^{2}}}{4}+\dfrac{3{{y}^{2}}}{4}+x+\dfrac{9y}{4}+\dfrac{1}{2}=0\].
Hence, we get \[3{{x}^{2}}+3{{y}^{2}}+4x+9y+2=0\] as the equation of circle whose diameter is the common chord of the circles \[{{S}_{1}}:{{x}^{2}}+{{y}^{2}}+2x+3y+1=0\] and \[{{S}_{2}}:{{x}^{2}}+{{y}^{2}}+4x+3y+2=0\].
Note: One needs to know the formula for writing the equation of the common chord of two circles. Otherwise, we can also solve this question by solving the equation of two circles to find the common chord. One must carefully perform the calculations; otherwise, you will get an incorrect answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE