
Find the area of the shaded region in the following diagram
Answer
583.5k+ views
Hint: Formula for area of intersection of two circle is \[A=r_{1}^{2}{{\cos }^{-1}}\left( \dfrac{{{d}_{1}}}{{{r}_{1}}} \right)-{{d}_{1}}\sqrt{r_{1}^{2}-d_{1}^{2}}+r_{2}^{2}{{\cos }^{-1}}\left( \dfrac{{{d}_{2}}}{{{r}_{2}}} \right)+{{d}_{2}}\sqrt{r_{2}^{2}-d_{2}^{2}}\]
Here \[{{r}_{1}}\] and \[{{r}_{2}}\] are the radius of the first and second circle.
And \[{{d}_{1}}\] , \[{{d}_{2}}\] are the distance of radius from the line that pass-through intersection of two circles.
Complete step-by-step answer:
In the above diagram there are two semicircles and the semicircles are inside a rectangle.
So, we have two similar semicircles. The radius of the semi-circle is 2 centimetres. Hence here \[{{r}_{1}}=2\] and \[{{r}_{2}}=2\]. As the distance from the line intersecting two circles is one centimetre that is \[{{d}_{1}}={{d}_{2}}=1\].
Now using it in the formula for area
\[A=r_{1}^{2}{{\cos }^{-1}}\left( \dfrac{{{d}_{1}}}{{{r}_{1}}} \right)-{{d}_{1}}\sqrt{r_{1}^{2}-d_{1}^{2}}+r_{2}^{2}{{\cos }^{-1}}\left( \dfrac{{{d}_{2}}}{{{r}_{2}}} \right)+{{d}_{2}}\sqrt{r_{2}^{2}-d_{2}^{2}}\]
\[\Rightarrow A={{2}^{2}}{{\cos }^{-1}}\left( \dfrac{1}{2} \right)-1\sqrt{{{2}^{2}}-{{1}^{2}}}+{{2}^{2}}{{\cos }^{-1}}\left( \dfrac{1}{2} \right)+1\sqrt{{{2}^{2}}-{{1}^{2}}}\]
\[A=4{{\cos }^{-1}}\left( \dfrac{1}{2} \right)-\sqrt{3}+4{{\cos }^{-1}}\left( \dfrac{1}{2} \right)+\sqrt{3}\]
As we know \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)\]is \[\dfrac{\pi }{3}\] using this in the equation
\[\Rightarrow A=4\dfrac{\pi }{3}-\sqrt{3}+4\dfrac{\pi }{3}+\sqrt{3}=8\dfrac{\pi }{3}-0\sqrt{3}\]
Hence, the area of the shaded region is \[\left( 8\dfrac{\pi }{3} \right)c{{m}^{2}}\].
Note: Consider the following diagram
Here we have two circle with centre \[{{c}_{1}}\] and \[{{c}_{2}}\] and radius \[{{r}_{1}}\] and \[{{r}_{2}}\] and \[{{d}_{1}}\] and \[{{d}_{2}}\] are distance from the line that pass through intersection point of two circle .
And the formula for the area is
\[A=r_{1}^{2}{{\cos }^{-1}}\left( \dfrac{{{d}_{1}}}{{{r}_{1}}} \right)-{{d}_{1}}\sqrt{r_{1}^{2}-d_{1}^{2}}+r_{2}^{2}{{\cos }^{-1}}\left( \dfrac{{{d}_{2}}}{{{r}_{2}}} \right)+{{d}_{2}}\sqrt{r_{2}^{2}-d_{2}^{2}}\]
This formula can be used to find the intersecting area of any two circles.
Here \[{{r}_{1}}\] and \[{{r}_{2}}\] are the radius of the first and second circle.
And \[{{d}_{1}}\] , \[{{d}_{2}}\] are the distance of radius from the line that pass-through intersection of two circles.
Complete step-by-step answer:
In the above diagram there are two semicircles and the semicircles are inside a rectangle.
So, we have two similar semicircles. The radius of the semi-circle is 2 centimetres. Hence here \[{{r}_{1}}=2\] and \[{{r}_{2}}=2\]. As the distance from the line intersecting two circles is one centimetre that is \[{{d}_{1}}={{d}_{2}}=1\].
Now using it in the formula for area
\[A=r_{1}^{2}{{\cos }^{-1}}\left( \dfrac{{{d}_{1}}}{{{r}_{1}}} \right)-{{d}_{1}}\sqrt{r_{1}^{2}-d_{1}^{2}}+r_{2}^{2}{{\cos }^{-1}}\left( \dfrac{{{d}_{2}}}{{{r}_{2}}} \right)+{{d}_{2}}\sqrt{r_{2}^{2}-d_{2}^{2}}\]
\[\Rightarrow A={{2}^{2}}{{\cos }^{-1}}\left( \dfrac{1}{2} \right)-1\sqrt{{{2}^{2}}-{{1}^{2}}}+{{2}^{2}}{{\cos }^{-1}}\left( \dfrac{1}{2} \right)+1\sqrt{{{2}^{2}}-{{1}^{2}}}\]
\[A=4{{\cos }^{-1}}\left( \dfrac{1}{2} \right)-\sqrt{3}+4{{\cos }^{-1}}\left( \dfrac{1}{2} \right)+\sqrt{3}\]
As we know \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)\]is \[\dfrac{\pi }{3}\] using this in the equation
\[\Rightarrow A=4\dfrac{\pi }{3}-\sqrt{3}+4\dfrac{\pi }{3}+\sqrt{3}=8\dfrac{\pi }{3}-0\sqrt{3}\]
Hence, the area of the shaded region is \[\left( 8\dfrac{\pi }{3} \right)c{{m}^{2}}\].
Note: Consider the following diagram
Here we have two circle with centre \[{{c}_{1}}\] and \[{{c}_{2}}\] and radius \[{{r}_{1}}\] and \[{{r}_{2}}\] and \[{{d}_{1}}\] and \[{{d}_{2}}\] are distance from the line that pass through intersection point of two circle .
And the formula for the area is
\[A=r_{1}^{2}{{\cos }^{-1}}\left( \dfrac{{{d}_{1}}}{{{r}_{1}}} \right)-{{d}_{1}}\sqrt{r_{1}^{2}-d_{1}^{2}}+r_{2}^{2}{{\cos }^{-1}}\left( \dfrac{{{d}_{2}}}{{{r}_{2}}} \right)+{{d}_{2}}\sqrt{r_{2}^{2}-d_{2}^{2}}\]
This formula can be used to find the intersecting area of any two circles.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

