
Find ${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}=$
A. ${{\log }_{e}}\dfrac{1}{2}$
B. $2\left[ x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+...\infty \right]$
C. $2\left[ {{x}^{2}}+\dfrac{{{x}^{4}}}{4}+\dfrac{{{x}^{6}}}{6}+...\infty \right]$
D. None of these
Answer
233.1k+ views
Hint: In this question, we are to find the expansion of the given logarithmic function. For this, we need to use the logarithmic functions and expansions such as ${{\log }_{e}}(1+x)$ and ${{\log }_{e}}(1-x)$. By simplifying them, we get the required expansion of the given logarithmic function.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}$
We can rewrite this as
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}={{\log }_{e}}{{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)$
{Here, we applied the logarithm property $\log \sqrt{x}=\dfrac{1}{2}\log x$}.
On simplifying, we get
$\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right]\text{ }...(1)$
{Here, we applied the logarithm property $\log (\dfrac{a}{b})=\log (a)-\log (b)$, which is said to be the division rule for logarithms.}
Since we know that
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
And
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
On substituting these two in (1), we get
$\begin{align}
& \dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
\end{align}$
On simplifying the above sequences, we get
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...+x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \dfrac{1}{2}\left[ 2x+\dfrac{2{{x}^{3}}}{3}+\dfrac{2{{x}^{5}}}{5}+.... \right] \\
& \Rightarrow x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+.... \\
\end{align}\]
Therefore, the required logarithmic expansion for the given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}=x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+....$
Option ‘D’ is correct
Note: Here, we need to remember that, the given logarithm function is in the form of $\log \sqrt{x}$. So, we can write it as $\log \sqrt{x}=\dfrac{1}{2}\log x$. By applying this property, the given logarithmic function is evaluated. Here we also applied another property of logarithm. I.e., $\log (\dfrac{a}{b})=\log (a)-\log (b)$. If we know the basic logarithmic properties and logarithmic series, we can evaluate such types of questions.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}$
We can rewrite this as
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}={{\log }_{e}}{{\left( \dfrac{1+x}{1-x} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)$
{Here, we applied the logarithm property $\log \sqrt{x}=\dfrac{1}{2}\log x$}.
On simplifying, we get
$\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right]\text{ }...(1)$
{Here, we applied the logarithm property $\log (\dfrac{a}{b})=\log (a)-\log (b)$, which is said to be the division rule for logarithms.}
Since we know that
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
And
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
On substituting these two in (1), we get
$\begin{align}
& \dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1+x}{1-x} \right)=\dfrac{1}{2}\left[ {{\log }_{e}}(1+x)-{{\log }_{e}}(1-x) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
\end{align}$
On simplifying the above sequences, we get
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left[ \left( x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right)-\left( -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \right) \right] \\
& \Rightarrow \dfrac{1}{2}\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...+x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \dfrac{1}{2}\left[ 2x+\dfrac{2{{x}^{3}}}{3}+\dfrac{2{{x}^{5}}}{5}+.... \right] \\
& \Rightarrow x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+.... \\
\end{align}\]
Therefore, the required logarithmic expansion for the given logarithmic function is
${{\log }_{e}}\sqrt{\dfrac{1+x}{1-x}}=x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+....$
Option ‘D’ is correct
Note: Here, we need to remember that, the given logarithm function is in the form of $\log \sqrt{x}$. So, we can write it as $\log \sqrt{x}=\dfrac{1}{2}\log x$. By applying this property, the given logarithmic function is evaluated. Here we also applied another property of logarithm. I.e., $\log (\dfrac{a}{b})=\log (a)-\log (b)$. If we know the basic logarithmic properties and logarithmic series, we can evaluate such types of questions.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

Other Pages
NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

NCERT Solutions For Class 11 Maths Chapter 13 Statistics (2025-26)

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Statistics Class 11 Maths Chapter 13 CBSE Notes - 2025-26

Understanding Collisions: Types and Examples for Students

