# Find $\int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}$

Answer

Verified

383.7k+ views

Hint: Use the formula for integration by parts,

\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=\ln x$ and $v(x)=\dfrac{1}{{{x}^{2}}}$.

Complete step-by-step answer:

First, let us decompose the function that we have to find the integration of (the integrand) into two functions.

Thus, $\int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\int\limits_{1}^{2}{\left( \ln x \right)\cdot \left( \dfrac{1}{{{x}^{2}}} \right)dx}$

We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].

In the above formula, by the ILATE rule, the function $u(x)=\ln x$ and $v(x)=\dfrac{1}{{{x}^{2}}}$.

Using these in the formula,

\[\int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \ln x \right)\cdot \int{\dfrac{1}{{{x}^{2}}}dx}-\int{\left( \dfrac{d}{dx}\left( \ln x \right)\cdot \int{\dfrac{1}{{{x}^{2}}}dx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]

We know that \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\] and we can find \[\int{\dfrac{1}{{{x}^{2}}}dx}\] as follows:

\[\int{\dfrac{1}{{{x}^{2}}}dx}=\int{{{x}^{-2}}dx}\]

\[\begin{align}

& \Rightarrow \int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{{{x}^{-2+1}}}{-1} \\

& \Rightarrow \int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x} \\

\end{align}\]

Using the values of \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\] and \[\int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x}\] in the equation (1)

\[\begin{align}

& \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \ln x \right)\cdot \left( \dfrac{-1}{x} \right)-\int{\left( \left( \dfrac{1}{x} \right)\cdot \left( \dfrac{-1}{x} \right) \right)dx} \\

& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)-\int{\left( \dfrac{-1}{{{x}^{2}}} \right)dx} \\

& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)+\int{\dfrac{1}{{{x}^{2}}}dx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\

\end{align}\]

Using the value of \[\int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x}\] in equation (2),

\[\begin{align}

& \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)+\left( \dfrac{-1}{x} \right)\ \\

& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln x}{x}-\dfrac{1}{x}+C \\

\end{align}\]

Putting in the lower and upper limit in the integration obtained,

\[\begin{align}

& \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln x}{x}-\dfrac{1}{x} \right)_{1}^{2} \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( -\dfrac{\ln 1}{1}-\dfrac{1}{1} \right) \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( 0-1 \right) \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( -1 \right) \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln 2}{2}-\dfrac{1}{2}+1 \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln 2}{2}+\dfrac{1}{2} \\

\end{align}\]

\[\begin{align}

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\dfrac{1}{2}-\dfrac{\ln 2}{2} \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\dfrac{1-\ln 2}{2} \\

\end{align}\]

Thus the required integration of $\int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}$ is \[\dfrac{1-\ln 2}{2}\].

Note: At first sight of the question, a student may be tempted to use integration by substitution method and apply $\ln x=t$ because the differentiation of $\ln x=\dfrac{1}{x}$ is there in the question. But because of the square attached, this approach fails to give the correct answer. Had the question been $\int\limits_{1}^{2}{\dfrac{\ln x}{x}dx}$, in that case, such an approach would have provided the correct results but because of ${{x}^{2}}$ in the denominator, integration by parts is the more suitable approach for finding the correct answer.

\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=\ln x$ and $v(x)=\dfrac{1}{{{x}^{2}}}$.

Complete step-by-step answer:

First, let us decompose the function that we have to find the integration of (the integrand) into two functions.

Thus, $\int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\int\limits_{1}^{2}{\left( \ln x \right)\cdot \left( \dfrac{1}{{{x}^{2}}} \right)dx}$

We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].

In the above formula, by the ILATE rule, the function $u(x)=\ln x$ and $v(x)=\dfrac{1}{{{x}^{2}}}$.

Using these in the formula,

\[\int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \ln x \right)\cdot \int{\dfrac{1}{{{x}^{2}}}dx}-\int{\left( \dfrac{d}{dx}\left( \ln x \right)\cdot \int{\dfrac{1}{{{x}^{2}}}dx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]

We know that \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\] and we can find \[\int{\dfrac{1}{{{x}^{2}}}dx}\] as follows:

\[\int{\dfrac{1}{{{x}^{2}}}dx}=\int{{{x}^{-2}}dx}\]

\[\begin{align}

& \Rightarrow \int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{{{x}^{-2+1}}}{-1} \\

& \Rightarrow \int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x} \\

\end{align}\]

Using the values of \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\] and \[\int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x}\] in the equation (1)

\[\begin{align}

& \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \ln x \right)\cdot \left( \dfrac{-1}{x} \right)-\int{\left( \left( \dfrac{1}{x} \right)\cdot \left( \dfrac{-1}{x} \right) \right)dx} \\

& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)-\int{\left( \dfrac{-1}{{{x}^{2}}} \right)dx} \\

& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)+\int{\dfrac{1}{{{x}^{2}}}dx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\

\end{align}\]

Using the value of \[\int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x}\] in equation (2),

\[\begin{align}

& \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)+\left( \dfrac{-1}{x} \right)\ \\

& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln x}{x}-\dfrac{1}{x}+C \\

\end{align}\]

Putting in the lower and upper limit in the integration obtained,

\[\begin{align}

& \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln x}{x}-\dfrac{1}{x} \right)_{1}^{2} \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( -\dfrac{\ln 1}{1}-\dfrac{1}{1} \right) \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( 0-1 \right) \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( -1 \right) \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln 2}{2}-\dfrac{1}{2}+1 \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln 2}{2}+\dfrac{1}{2} \\

\end{align}\]

\[\begin{align}

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\dfrac{1}{2}-\dfrac{\ln 2}{2} \\

& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\dfrac{1-\ln 2}{2} \\

\end{align}\]

Thus the required integration of $\int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}$ is \[\dfrac{1-\ln 2}{2}\].

Note: At first sight of the question, a student may be tempted to use integration by substitution method and apply $\ln x=t$ because the differentiation of $\ln x=\dfrac{1}{x}$ is there in the question. But because of the square attached, this approach fails to give the correct answer. Had the question been $\int\limits_{1}^{2}{\dfrac{\ln x}{x}dx}$, in that case, such an approach would have provided the correct results but because of ${{x}^{2}}$ in the denominator, integration by parts is the more suitable approach for finding the correct answer.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which one of the following places is unlikely to be class 8 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Elucidate the structure of fructose class 12 chemistry CBSE

What is pollution? How many types of pollution? Define it