
Find $\int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}$
Answer
621.3k+ views
Hint: Use the formula for integration by parts,
\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=\ln x$ and $v(x)=\dfrac{1}{{{x}^{2}}}$.
Complete step-by-step answer:
First, let us decompose the function that we have to find the integration of (the integrand) into two functions.
Thus, $\int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\int\limits_{1}^{2}{\left( \ln x \right)\cdot \left( \dfrac{1}{{{x}^{2}}} \right)dx}$
We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].
In the above formula, by the ILATE rule, the function $u(x)=\ln x$ and $v(x)=\dfrac{1}{{{x}^{2}}}$.
Using these in the formula,
\[\int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \ln x \right)\cdot \int{\dfrac{1}{{{x}^{2}}}dx}-\int{\left( \dfrac{d}{dx}\left( \ln x \right)\cdot \int{\dfrac{1}{{{x}^{2}}}dx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]
We know that \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\] and we can find \[\int{\dfrac{1}{{{x}^{2}}}dx}\] as follows:
\[\int{\dfrac{1}{{{x}^{2}}}dx}=\int{{{x}^{-2}}dx}\]
\[\begin{align}
& \Rightarrow \int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{{{x}^{-2+1}}}{-1} \\
& \Rightarrow \int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x} \\
\end{align}\]
Using the values of \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\] and \[\int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x}\] in the equation (1)
\[\begin{align}
& \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \ln x \right)\cdot \left( \dfrac{-1}{x} \right)-\int{\left( \left( \dfrac{1}{x} \right)\cdot \left( \dfrac{-1}{x} \right) \right)dx} \\
& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)-\int{\left( \dfrac{-1}{{{x}^{2}}} \right)dx} \\
& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)+\int{\dfrac{1}{{{x}^{2}}}dx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\
\end{align}\]
Using the value of \[\int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x}\] in equation (2),
\[\begin{align}
& \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)+\left( \dfrac{-1}{x} \right)\ \\
& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln x}{x}-\dfrac{1}{x}+C \\
\end{align}\]
Putting in the lower and upper limit in the integration obtained,
\[\begin{align}
& \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln x}{x}-\dfrac{1}{x} \right)_{1}^{2} \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( -\dfrac{\ln 1}{1}-\dfrac{1}{1} \right) \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( 0-1 \right) \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( -1 \right) \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln 2}{2}-\dfrac{1}{2}+1 \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln 2}{2}+\dfrac{1}{2} \\
\end{align}\]
\[\begin{align}
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\dfrac{1}{2}-\dfrac{\ln 2}{2} \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\dfrac{1-\ln 2}{2} \\
\end{align}\]
Thus the required integration of $\int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}$ is \[\dfrac{1-\ln 2}{2}\].
Note: At first sight of the question, a student may be tempted to use integration by substitution method and apply $\ln x=t$ because the differentiation of $\ln x=\dfrac{1}{x}$ is there in the question. But because of the square attached, this approach fails to give the correct answer. Had the question been $\int\limits_{1}^{2}{\dfrac{\ln x}{x}dx}$, in that case, such an approach would have provided the correct results but because of ${{x}^{2}}$ in the denominator, integration by parts is the more suitable approach for finding the correct answer.
\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=\ln x$ and $v(x)=\dfrac{1}{{{x}^{2}}}$.
Complete step-by-step answer:
First, let us decompose the function that we have to find the integration of (the integrand) into two functions.
Thus, $\int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\int\limits_{1}^{2}{\left( \ln x \right)\cdot \left( \dfrac{1}{{{x}^{2}}} \right)dx}$
We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].
In the above formula, by the ILATE rule, the function $u(x)=\ln x$ and $v(x)=\dfrac{1}{{{x}^{2}}}$.
Using these in the formula,
\[\int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \ln x \right)\cdot \int{\dfrac{1}{{{x}^{2}}}dx}-\int{\left( \dfrac{d}{dx}\left( \ln x \right)\cdot \int{\dfrac{1}{{{x}^{2}}}dx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]
We know that \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\] and we can find \[\int{\dfrac{1}{{{x}^{2}}}dx}\] as follows:
\[\int{\dfrac{1}{{{x}^{2}}}dx}=\int{{{x}^{-2}}dx}\]
\[\begin{align}
& \Rightarrow \int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{{{x}^{-2+1}}}{-1} \\
& \Rightarrow \int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x} \\
\end{align}\]
Using the values of \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\] and \[\int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x}\] in the equation (1)
\[\begin{align}
& \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \ln x \right)\cdot \left( \dfrac{-1}{x} \right)-\int{\left( \left( \dfrac{1}{x} \right)\cdot \left( \dfrac{-1}{x} \right) \right)dx} \\
& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)-\int{\left( \dfrac{-1}{{{x}^{2}}} \right)dx} \\
& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)+\int{\dfrac{1}{{{x}^{2}}}dx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\
\end{align}\]
Using the value of \[\int{\dfrac{1}{{{x}^{2}}}dx}=\dfrac{-1}{x}\] in equation (2),
\[\begin{align}
& \int{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( \dfrac{-\ln x}{x} \right)+\left( \dfrac{-1}{x} \right)\ \\
& \Rightarrow \int{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln x}{x}-\dfrac{1}{x}+C \\
\end{align}\]
Putting in the lower and upper limit in the integration obtained,
\[\begin{align}
& \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln x}{x}-\dfrac{1}{x} \right)_{1}^{2} \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( -\dfrac{\ln 1}{1}-\dfrac{1}{1} \right) \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( 0-1 \right) \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\left( -\dfrac{\ln 2}{2}-\dfrac{1}{2} \right)-\left( -1 \right) \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln 2}{2}-\dfrac{1}{2}+1 \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=-\dfrac{\ln 2}{2}+\dfrac{1}{2} \\
\end{align}\]
\[\begin{align}
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\dfrac{1}{2}-\dfrac{\ln 2}{2} \\
& \Rightarrow \int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}=\dfrac{1-\ln 2}{2} \\
\end{align}\]
Thus the required integration of $\int\limits_{1}^{2}{\dfrac{\ln x}{{{x}^{2}}}dx}$ is \[\dfrac{1-\ln 2}{2}\].
Note: At first sight of the question, a student may be tempted to use integration by substitution method and apply $\ln x=t$ because the differentiation of $\ln x=\dfrac{1}{x}$ is there in the question. But because of the square attached, this approach fails to give the correct answer. Had the question been $\int\limits_{1}^{2}{\dfrac{\ln x}{x}dx}$, in that case, such an approach would have provided the correct results but because of ${{x}^{2}}$ in the denominator, integration by parts is the more suitable approach for finding the correct answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

