# Find $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}$

Last updated date: 20th Mar 2023

•

Total views: 305.4k

•

Views today: 5.84k

Answer

Verified

305.4k+ views

Hint: Use the integration by parts formula,

\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=x$ and $v(x)=\sin x$. and substitute upper and lower limit values.

“Complete step-by-step answer:”

First, let us decompose the function that we have to find the integration of (the integrand) into two functions.

Thus, $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\int\limits_{0}^{{\pi }/{2}\;}{\left( x \right)\cdot \left( \sin x \right)dx}$

We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].

In the above formula, by the ILATE rule, the function $u(x)=x$ and $v(x)=\sin x$.

Using these in the formula,

\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]

We know that \[\dfrac{d}{dx}\left( x \right)=1\] and\[\int{\sin xdx}=-\cos x\]

Using the values of \[\dfrac{d}{dx}\left( x \right)=1\] and \[\int{\sin xdx}=-\cos x\] in the equation (1)

\[\begin{align}

& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx} \\

& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( x \right)\cdot \left( -\cos x \right)-\int{\left( 1\cdot \left( \cos x \right) \right)dx} \\

& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\int{\cos xdx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\

\end{align}\]

We know that \[\int{\cos xdx}=\sin x\]

Using the value of \[\int{\cos xdx}=\sin x\] in equation (2),

\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\sin x+C\]

Putting in the lower and upper limit in the integration obtained,

\[\begin{align}

& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -x\cos x-\sin x+C \right)_{0}^{{\pi }/{2}\;} \\

& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -\dfrac{\pi }{2}\cos \left( \dfrac{\pi }{2} \right)-\sin \left( \dfrac{\pi }{2} \right) \right)-\left( 0\cos 0-\sin 0 \right)\ \ \ \ \ \ \ \ldots \left( 3 \right) \\

\end{align}\]

Now we know that the value of $\cos \dfrac{\pi }{2}=0,\ \cos 0=1,\ \sin \dfrac{\pi }{2}=1$and $\sin 0=0$

Using these values in equation 3 we get

\[\begin{align}

& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( \left( -\dfrac{\pi }{2} \right)\cdot \left( 0 \right)-1 \right)-\left( \left( 0 \right)\cdot \left( 1 \right)-0 \right) \\

& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -1 \right)-0 \\

& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-1 \\

\end{align}\]

Thus the required integration of $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}$ is -1.

Note: The question is a basic question of integration by parts, but it is important to do the calculations carefully. One can be easily confused in the calculations involved with lots of positive and negative signs. To keep things simple, first find the complete indefinite integral and then put in limits.

\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=x$ and $v(x)=\sin x$. and substitute upper and lower limit values.

“Complete step-by-step answer:”

First, let us decompose the function that we have to find the integration of (the integrand) into two functions.

Thus, $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\int\limits_{0}^{{\pi }/{2}\;}{\left( x \right)\cdot \left( \sin x \right)dx}$

We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].

In the above formula, by the ILATE rule, the function $u(x)=x$ and $v(x)=\sin x$.

Using these in the formula,

\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]

We know that \[\dfrac{d}{dx}\left( x \right)=1\] and\[\int{\sin xdx}=-\cos x\]

Using the values of \[\dfrac{d}{dx}\left( x \right)=1\] and \[\int{\sin xdx}=-\cos x\] in the equation (1)

\[\begin{align}

& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx} \\

& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( x \right)\cdot \left( -\cos x \right)-\int{\left( 1\cdot \left( \cos x \right) \right)dx} \\

& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\int{\cos xdx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\

\end{align}\]

We know that \[\int{\cos xdx}=\sin x\]

Using the value of \[\int{\cos xdx}=\sin x\] in equation (2),

\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\sin x+C\]

Putting in the lower and upper limit in the integration obtained,

\[\begin{align}

& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -x\cos x-\sin x+C \right)_{0}^{{\pi }/{2}\;} \\

& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -\dfrac{\pi }{2}\cos \left( \dfrac{\pi }{2} \right)-\sin \left( \dfrac{\pi }{2} \right) \right)-\left( 0\cos 0-\sin 0 \right)\ \ \ \ \ \ \ \ldots \left( 3 \right) \\

\end{align}\]

Now we know that the value of $\cos \dfrac{\pi }{2}=0,\ \cos 0=1,\ \sin \dfrac{\pi }{2}=1$and $\sin 0=0$

Using these values in equation 3 we get

\[\begin{align}

& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( \left( -\dfrac{\pi }{2} \right)\cdot \left( 0 \right)-1 \right)-\left( \left( 0 \right)\cdot \left( 1 \right)-0 \right) \\

& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -1 \right)-0 \\

& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-1 \\

\end{align}\]

Thus the required integration of $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}$ is -1.

Note: The question is a basic question of integration by parts, but it is important to do the calculations carefully. One can be easily confused in the calculations involved with lots of positive and negative signs. To keep things simple, first find the complete indefinite integral and then put in limits.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?