Find $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}$
Answer
381.3k+ views
Hint: Use the integration by parts formula,
\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=x$ and $v(x)=\sin x$. and substitute upper and lower limit values.
“Complete step-by-step answer:”
First, let us decompose the function that we have to find the integration of (the integrand) into two functions.
Thus, $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\int\limits_{0}^{{\pi }/{2}\;}{\left( x \right)\cdot \left( \sin x \right)dx}$
We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].
In the above formula, by the ILATE rule, the function $u(x)=x$ and $v(x)=\sin x$.
Using these in the formula,
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]
We know that \[\dfrac{d}{dx}\left( x \right)=1\] and\[\int{\sin xdx}=-\cos x\]
Using the values of \[\dfrac{d}{dx}\left( x \right)=1\] and \[\int{\sin xdx}=-\cos x\] in the equation (1)
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( x \right)\cdot \left( -\cos x \right)-\int{\left( 1\cdot \left( \cos x \right) \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\int{\cos xdx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\
\end{align}\]
We know that \[\int{\cos xdx}=\sin x\]
Using the value of \[\int{\cos xdx}=\sin x\] in equation (2),
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\sin x+C\]
Putting in the lower and upper limit in the integration obtained,
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -x\cos x-\sin x+C \right)_{0}^{{\pi }/{2}\;} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -\dfrac{\pi }{2}\cos \left( \dfrac{\pi }{2} \right)-\sin \left( \dfrac{\pi }{2} \right) \right)-\left( 0\cos 0-\sin 0 \right)\ \ \ \ \ \ \ \ldots \left( 3 \right) \\
\end{align}\]
Now we know that the value of $\cos \dfrac{\pi }{2}=0,\ \cos 0=1,\ \sin \dfrac{\pi }{2}=1$and $\sin 0=0$
Using these values in equation 3 we get
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( \left( -\dfrac{\pi }{2} \right)\cdot \left( 0 \right)-1 \right)-\left( \left( 0 \right)\cdot \left( 1 \right)-0 \right) \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -1 \right)-0 \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-1 \\
\end{align}\]
Thus the required integration of $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}$ is -1.
Note: The question is a basic question of integration by parts, but it is important to do the calculations carefully. One can be easily confused in the calculations involved with lots of positive and negative signs. To keep things simple, first find the complete indefinite integral and then put in limits.
\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\] with $u(x)=x$ and $v(x)=\sin x$. and substitute upper and lower limit values.
“Complete step-by-step answer:”
First, let us decompose the function that we have to find the integration of (the integrand) into two functions.
Thus, $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\int\limits_{0}^{{\pi }/{2}\;}{\left( x \right)\cdot \left( \sin x \right)dx}$
We do this so that now we have two different functions and each of these functions is a simple function. Now, since we have 2 different functions, we can use integration by parts to solve the required integration. Using the ILATE rule for integration by parts, we can apply the formula\[\int{u(x)\cdot v(x)dx}=u(x)\cdot \int{v(x)dx}-\int{\left( \dfrac{d}{dx}u(x)\cdot \int{v(x)dx} \right)dx}\].
In the above formula, by the ILATE rule, the function $u(x)=x$ and $v(x)=\sin x$.
Using these in the formula,
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx}\ \ \ \ \ \ \ \ldots \left( 1 \right)\]
We know that \[\dfrac{d}{dx}\left( x \right)=1\] and\[\int{\sin xdx}=-\cos x\]
Using the values of \[\dfrac{d}{dx}\left( x \right)=1\] and \[\int{\sin xdx}=-\cos x\] in the equation (1)
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=x\cdot \int{\sin xdx}-\int{\left( \dfrac{d}{dx}\left( x \right)\cdot \int{\sin xdx} \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( x \right)\cdot \left( -\cos x \right)-\int{\left( 1\cdot \left( \cos x \right) \right)dx} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\int{\cos xdx}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) \\
\end{align}\]
We know that \[\int{\cos xdx}=\sin x\]
Using the value of \[\int{\cos xdx}=\sin x\] in equation (2),
\[\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-x\cos x-\sin x+C\]
Putting in the lower and upper limit in the integration obtained,
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -x\cos x-\sin x+C \right)_{0}^{{\pi }/{2}\;} \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -\dfrac{\pi }{2}\cos \left( \dfrac{\pi }{2} \right)-\sin \left( \dfrac{\pi }{2} \right) \right)-\left( 0\cos 0-\sin 0 \right)\ \ \ \ \ \ \ \ldots \left( 3 \right) \\
\end{align}\]
Now we know that the value of $\cos \dfrac{\pi }{2}=0,\ \cos 0=1,\ \sin \dfrac{\pi }{2}=1$and $\sin 0=0$
Using these values in equation 3 we get
\[\begin{align}
& \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( \left( -\dfrac{\pi }{2} \right)\cdot \left( 0 \right)-1 \right)-\left( \left( 0 \right)\cdot \left( 1 \right)-0 \right) \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=\left( -1 \right)-0 \\
& \Rightarrow \int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}=-1 \\
\end{align}\]
Thus the required integration of $\int\limits_{0}^{{\pi }/{2}\;}{x\sin xdx}$ is -1.
Note: The question is a basic question of integration by parts, but it is important to do the calculations carefully. One can be easily confused in the calculations involved with lots of positive and negative signs. To keep things simple, first find the complete indefinite integral and then put in limits.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Which state has the longest coastline in India A Tamil class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE
