Answer
Verified
447.3k+ views
Hint: To solve the above problem first we have to find the basic derivatives of \[\sec x\] and \[\tan x\]. After substituting the derivatives in the equation, rewrite the equation with the derivatives of the function. Solve the equation to find the final answer.
Complete step-by-step answer:
Applying derivative on both sides of the equation with respect to x we get,
\[f'\left( x \right)=\dfrac{d}{dx}\left( \sec x \right)-\dfrac{d}{dx}\left( \sqrt{2}\tan x \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know the derivative of \[\sec x\] is \[\sec x\cdot \tan x\] and the derivative of \[\tan x\] is \[{{\sec }^{2}}x\].
On substituting the derivatives of \[\sec x\] and \[\tan x\] in the above equation we get,
\[f'\left( x \right)=\sec x\cdot \tan x-\sqrt{2}{{\sec }^{2}}x\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Taking \[\sec x\] as common in the right hand side (RHS) we get,
\[f'\left( x \right)=\sec x\left( \tan x-\sqrt{2}\sec x \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Hence the value of \[f'\left( x \right)\] is \[\sec x\left( \tan x-\sqrt{2}\sec x \right)\].
Note: The possible error that you may encounter can be the wrong substitution values of the derivatives of \[\sec x\] and \[\tan x\]. Solving the equation should be done carefully. It is to note here that integers are exempted from the calculation of derivatives.
Complete step-by-step answer:
Applying derivative on both sides of the equation with respect to x we get,
\[f'\left( x \right)=\dfrac{d}{dx}\left( \sec x \right)-\dfrac{d}{dx}\left( \sqrt{2}\tan x \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know the derivative of \[\sec x\] is \[\sec x\cdot \tan x\] and the derivative of \[\tan x\] is \[{{\sec }^{2}}x\].
On substituting the derivatives of \[\sec x\] and \[\tan x\] in the above equation we get,
\[f'\left( x \right)=\sec x\cdot \tan x-\sqrt{2}{{\sec }^{2}}x\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Taking \[\sec x\] as common in the right hand side (RHS) we get,
\[f'\left( x \right)=\sec x\left( \tan x-\sqrt{2}\sec x \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Hence the value of \[f'\left( x \right)\] is \[\sec x\left( \tan x-\sqrt{2}\sec x \right)\].
Note: The possible error that you may encounter can be the wrong substitution values of the derivatives of \[\sec x\] and \[\tan x\]. Solving the equation should be done carefully. It is to note here that integers are exempted from the calculation of derivatives.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE