
Find $\dfrac{{dy}}{{dx}}$where${x^y} = {y^x};{\text{ x > 0,y > 0}}$.
Answer
611.7k+ views
HInt: here you can take log both sides and then use rules of differentiation to make it easy.
We have to find the derivative of ${x^y} = {y^x};{\text{ x > 0,y > 0}}$
So let’s take log both sides we get
$\log ({x^y}) = \log ({y^x})$
Using the property of logarithm that$\log ({a^b}) = b\log a$, we can write above as
$y \times \log x = x \times \log y$
Now let’s differentiate both the sides with respect to $x$ using the product rule of derivative and chain rule we have
$\dfrac{{dy}}{{dx}} \times \log x + y \times \dfrac{1}{x} = 1 \times \log y + x \times \dfrac{1}{y}\dfrac{{dy}}{{dx}}$
Let’s take $\dfrac{{dy}}{{dx}}$terms to left hand side
$ \Rightarrow \dfrac{{dy}}{{dx}}\left( {\log x - \dfrac{x}{y}} \right) = \log y - \dfrac{y}{x}$
So our $\dfrac{{dy}}{{dx}}$is
$\dfrac{{dy}}{{dx}} = \dfrac{{\log y - \dfrac{y}{x}}}{{\log x - \dfrac{x}{y}}}$
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{x\log y - y}}{x}}}{{\dfrac{{y\log x - x}}{y}}}$
Let’s simplify it further
$\dfrac{{dy}}{{dx}} = \dfrac{{x\log y - y}}{{y\log x - x}}\left( {\dfrac{y}{x}} \right)$
Note-The key concept to solve such a problem statement is to take logarithm both sides and apply the property of log as mentioned above before differentiating , this always will take you to the right answer.
We have to find the derivative of ${x^y} = {y^x};{\text{ x > 0,y > 0}}$
So let’s take log both sides we get
$\log ({x^y}) = \log ({y^x})$
Using the property of logarithm that$\log ({a^b}) = b\log a$, we can write above as
$y \times \log x = x \times \log y$
Now let’s differentiate both the sides with respect to $x$ using the product rule of derivative and chain rule we have
$\dfrac{{dy}}{{dx}} \times \log x + y \times \dfrac{1}{x} = 1 \times \log y + x \times \dfrac{1}{y}\dfrac{{dy}}{{dx}}$
Let’s take $\dfrac{{dy}}{{dx}}$terms to left hand side
$ \Rightarrow \dfrac{{dy}}{{dx}}\left( {\log x - \dfrac{x}{y}} \right) = \log y - \dfrac{y}{x}$
So our $\dfrac{{dy}}{{dx}}$is
$\dfrac{{dy}}{{dx}} = \dfrac{{\log y - \dfrac{y}{x}}}{{\log x - \dfrac{x}{y}}}$
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{x\log y - y}}{x}}}{{\dfrac{{y\log x - x}}{y}}}$
Let’s simplify it further
$\dfrac{{dy}}{{dx}} = \dfrac{{x\log y - y}}{{y\log x - x}}\left( {\dfrac{y}{x}} \right)$
Note-The key concept to solve such a problem statement is to take logarithm both sides and apply the property of log as mentioned above before differentiating , this always will take you to the right answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

