
How many faradays of charge is transferred to produce 11.2 mL of ${{H}_{2}}$ at STP in the following reaction, $NaH+{{H}_{2}}O\text{ }\to \text{ }NaOH+{{H}_{2}}\uparrow $
(A) 1
(B) 0.5
(C) 2
(D) 2.5
Answer
511.5k+ views
Hint: Try to recall the concept of electrolysis given in the chapter electrochemistry. In the reaction provided, find the number of electrons involved for 1 mole of reactant. With this, you can now substitute the values in the formula for Faraday's first law of electrolysis.
Complete step by step solution:
Electrochemistry is the branch of physical chemistry that mainly deals with the relationship between electricity and identifiable chemical change.
An electrochemical reaction is a chemical reaction in which current is externally supplied or produced through a spontaneous chemical reaction.
Chemical reactions where electrons are directly transferred between the constituent molecules or atoms are called oxidation-reduction or rather redox reactions.
Faraday’s First Law of Electrolysis states that the chemical deposition of a substance due to the flow of current through an electrolyte is directly proportional to the quantity of electricity passed through it.
$\begin{align}
& {{\text{m}}_{{}}}{{\propto }_{{}}}Q \\
& {{m}_{{}}}{{=}_{{}}}Z.Q \\
\end{align}$
Where,
$m$ is the mass of electrolyte deposited,
$Q$ is the quantity of electricity
$Z$ is the constant of proportionality and is known as the electrochemical equivalent.
We will now write the reaction and identify the amount of charge required.
$NaH+{{H}_{2}}O\text{ }\to \text{ }NaOH+{{H}_{2}}\uparrow $
In the above reaction, we find that there is a change in the oxidation state of 1 for every mole of reactant.
$1$ mole of any substance occupies $22.4 L$ volume at STP. So, $11.2 L$ of ${{H}_{2}}$ is occupied by $0.5$ moles of reactant.
So, $0.5$ moles of electrons are used in the reaction. The number of faradays of charge is transferred to produce $11.2$ $mL$ of ${{H}_{2}}$ at STP in the following reaction is $0.5$.
Therefore, the correct answer is option (B).
Note: The term faraday is used in chemistry and farad used in physics. One Farad is defined as the capacitance across two plates when charged to 1 coulomb and the potential difference is 1 volt. On the other hand, one faraday is the magnitude of the charge of 1 mole of electrons. Although both terms are in honour of the same scientist, they are two completely different terms.
Complete step by step solution:
Electrochemistry is the branch of physical chemistry that mainly deals with the relationship between electricity and identifiable chemical change.
An electrochemical reaction is a chemical reaction in which current is externally supplied or produced through a spontaneous chemical reaction.
Chemical reactions where electrons are directly transferred between the constituent molecules or atoms are called oxidation-reduction or rather redox reactions.
Faraday’s First Law of Electrolysis states that the chemical deposition of a substance due to the flow of current through an electrolyte is directly proportional to the quantity of electricity passed through it.
$\begin{align}
& {{\text{m}}_{{}}}{{\propto }_{{}}}Q \\
& {{m}_{{}}}{{=}_{{}}}Z.Q \\
\end{align}$
Where,
$m$ is the mass of electrolyte deposited,
$Q$ is the quantity of electricity
$Z$ is the constant of proportionality and is known as the electrochemical equivalent.
We will now write the reaction and identify the amount of charge required.
$NaH+{{H}_{2}}O\text{ }\to \text{ }NaOH+{{H}_{2}}\uparrow $
In the above reaction, we find that there is a change in the oxidation state of 1 for every mole of reactant.
$1$ mole of any substance occupies $22.4 L$ volume at STP. So, $11.2 L$ of ${{H}_{2}}$ is occupied by $0.5$ moles of reactant.
So, $0.5$ moles of electrons are used in the reaction. The number of faradays of charge is transferred to produce $11.2$ $mL$ of ${{H}_{2}}$ at STP in the following reaction is $0.5$.
Therefore, the correct answer is option (B).
Note: The term faraday is used in chemistry and farad used in physics. One Farad is defined as the capacitance across two plates when charged to 1 coulomb and the potential difference is 1 volt. On the other hand, one faraday is the magnitude of the charge of 1 mole of electrons. Although both terms are in honour of the same scientist, they are two completely different terms.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The first general election of Lok Sabha was held in class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
