Answer
Verified
394.1k+ views
Hint: The Reimer- Tiemann reaction is carried out on phenols in presence of chloroform and we obtain a hydroxybenzaldehyde as the end product. It proceeds through electrophilic substitution pathway.In the Williamson’s synthesis, a primary alkyl halide and an alkoxide ion is used and the product thus formed is ether. It proceeds through nucleophilic substitution pathway.
Complete Step by Step Solution: At first, we will discuss the Reimer- Tiemann Reaction-
When we treat phenol with chloroform and an aqueous hydroxide, an aldehyde group –CHO is introduced onto the aromatic ring. Generally, the aldehyde is introduced at the ortho-position with respect to the –OH group. This reaction is named as Reimer- Tiemann Reaction. Let us take an example-
Here, a substituted benzal chloride is formed initially, but it is hydrolysed by the alkaline reaction medium.
The Riemer-Tiemann synthesis reaction involves electrophilic substitution on the highly reactive phenoxide ring. Here, the electrophilic reagent is dichlorocarbene ($:CC{{l}_{2}}$), which is generated from chloroform through the action of base. Although dichlorocarbene is electrically neutral but it contains carbon with only a sextet of electrons which makes it highly electrophilic-
\[O{{H}^{-}}+CHC{{l}_{3}}\rightleftarrows {{H}_{2}}O{{+}^{-}}:CC{{l}_{3}}\to C{{l}^{-}}+:CC{{l}_{2}}\]
Now, we will discuss the Williamson ether synthesis-
As we can understand from the name itself, the end product in this synthesis is ether.
In this synthesis, an alkoxide anion undergoes substitution nucleophilic bimolecular reaction with an alkyl halide and forms ether. We generally carry out this reaction for the formation of unsymmetrical ethers. We will take an example to understand the mechanism of this reaction-
Here we have to use a strong base, NaH to form the alkoxide anion as alcohols are a weak acid and methyl iodide is used here which is the electrophile.
Here, the reaction proceeds via ${{S}_{N}}_2$ pathway.
Note:
(i) In the Riemer-Tiemann reaction, the phenoxide ion formed will show mesomeric and inductive effect hence, the reaction might take place at ortho or para position. But as we know, +I effect decreases with increasing distance, therefore the ortho position will be electron rich and the incoming electrophile will attack at the ortho position. Therefore, formylation will take place at the ortho position.
(ii) The simple alkyl groups, methyl groups and primary alkyl groups always react by the ${{S}_{N}}_2$ mechanism. This is due to the fact that if it proceeds via ${{S}_{N}}_1$ pathway, the cations formed will not be stable.
Complete Step by Step Solution: At first, we will discuss the Reimer- Tiemann Reaction-
When we treat phenol with chloroform and an aqueous hydroxide, an aldehyde group –CHO is introduced onto the aromatic ring. Generally, the aldehyde is introduced at the ortho-position with respect to the –OH group. This reaction is named as Reimer- Tiemann Reaction. Let us take an example-
Here, a substituted benzal chloride is formed initially, but it is hydrolysed by the alkaline reaction medium.
The Riemer-Tiemann synthesis reaction involves electrophilic substitution on the highly reactive phenoxide ring. Here, the electrophilic reagent is dichlorocarbene ($:CC{{l}_{2}}$), which is generated from chloroform through the action of base. Although dichlorocarbene is electrically neutral but it contains carbon with only a sextet of electrons which makes it highly electrophilic-
\[O{{H}^{-}}+CHC{{l}_{3}}\rightleftarrows {{H}_{2}}O{{+}^{-}}:CC{{l}_{3}}\to C{{l}^{-}}+:CC{{l}_{2}}\]
Now, we will discuss the Williamson ether synthesis-
As we can understand from the name itself, the end product in this synthesis is ether.
In this synthesis, an alkoxide anion undergoes substitution nucleophilic bimolecular reaction with an alkyl halide and forms ether. We generally carry out this reaction for the formation of unsymmetrical ethers. We will take an example to understand the mechanism of this reaction-
Here we have to use a strong base, NaH to form the alkoxide anion as alcohols are a weak acid and methyl iodide is used here which is the electrophile.
Here, the reaction proceeds via ${{S}_{N}}_2$ pathway.
Note:
(i) In the Riemer-Tiemann reaction, the phenoxide ion formed will show mesomeric and inductive effect hence, the reaction might take place at ortho or para position. But as we know, +I effect decreases with increasing distance, therefore the ortho position will be electron rich and the incoming electrophile will attack at the ortho position. Therefore, formylation will take place at the ortho position.
(ii) The simple alkyl groups, methyl groups and primary alkyl groups always react by the ${{S}_{N}}_2$ mechanism. This is due to the fact that if it proceeds via ${{S}_{N}}_1$ pathway, the cations formed will not be stable.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE