# Expand the following binomial:

${{(2x-y)}^{5}}$ .

Last updated date: 20th Mar 2023

•

Total views: 304.5k

•

Views today: 8.83k

Answer

Verified

304.5k+ views

Hint: We have to expand ${{(2x-y)}^{5}}$ , for that use formula \[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\] and assume $a=2x$, $b=-y$ and $n=5$ . Try it, you will get the answer.

Complete step-by-step answer:

As the power increases the expansion becomes lengthy and tedious to calculate. A binomial expression that has been raised to a very large power can be easily calculated with the help of Binomial Theorem. Learn about all the details about binomial theorem like its definition, properties, applications.

According to the binomial theorem, the ${{(r+1)}^{th}}$term in the expansion of ${{(a+b)}^{n}}$is,

\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]

The above term is a general term or${{(r+1)}^{th}}$term. The total number of terms in the binomial expansion ${{(a+b)}^{n}}$is$(n+1)$, i.e. one more than the exponent$n$.

In the Binomial expression, we have

\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]

So the coefficients${}^{n}{{C}_{0}},{}^{n}{{C}_{1}},............,{}^{n}{{C}_{n}}$ are known as binomial or combinatorial coefficients.

You can see them${}^{n}{{C}_{r}}$being used here which is the binomial coefficient. The sum of the binomial coefficients will be ${{2}^{n}}$because, as we know that,

$\sum\nolimits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right)}={{2}^{n}}$

Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to${{2}^{n-1}}$.

The middle term depends upon the value of$n$,

If $n$ is even: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (odd).

If $n$ is odd: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (even).

If $n$is a positive integer,

\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]

So here $a=2x$, $b=-y$ and $n=5$ .

So using the binomial expansion,

\[{{(2x-y)}^{5}}={}^{5}{{C}_{0}}{{(2x)}^{5}}{{\left( -y \right)}^{0}}+{}^{5}{{C}_{1}}{{(2x)}^{5-1}}{{\left( -y \right)}^{1}}+{}^{5}{{C}_{2}}{{(2x)}^{5-2}}{{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}{{(2x)}^{5-3}}{{\left( -y \right)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{5-4}}{{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{(2x)}^{5-5}}{{\left( -y \right)}^{5}}\]

\[\begin{align}

& {{(2x-y)}^{5}}={}^{5}{{C}_{0}}{{(2x)}^{5}}+{}^{5}{{C}_{1}}{{(2x)}^{4}}\left( -y \right)+{}^{5}{{C}_{2}}{{(2x)}^{3}}{{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}{{(2x)}^{2}}{{\left( -y \right)}^{3}}+{}^{5}{{C}_{4}}{{(2x)}^{1}}{{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{(2x)}^{0}}{{\left( -y \right)}^{5}} \\

& {{(2x-y)}^{5}}=(32{{x}^{5}})+{}^{5}{{C}_{1}}(16{{x}^{4}})\left( -y \right)+{}^{5}{{C}_{2}}(8{{x}^{3}}){{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}(4{{x}^{2}}){{\left( -y \right)}^{3}}+{}^{5}{{C}_{4}}(2x){{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -y \right)}^{5}} \\

& {{(2x-y)}^{5}}=(32{{x}^{5}})+5(16{{x}^{4}})\left( -y \right)+\dfrac{5\times 4}{2\times 1}(8{{x}^{3}}){{\left( -y \right)}^{2}}+\dfrac{5\times 4\times 3}{3\times 2\times 1}(4{{x}^{2}}){{\left( -y \right)}^{3}}+\dfrac{5\times 4\times 3\times 2}{4\times 3\times 2\times 1}(2x){{\left( -y \right)}^{4}}+{{\left( -y \right)}^{5}} \\

& {{(2x-y)}^{5}}=(32{{x}^{5}})-80{{x}^{4}}y+80{{x}^{3}}{{y}^{2}}-40{{x}^{2}}{{y}^{3}}+10x{{y}^{4}}-{{y}^{5}} \\

\end{align}\]

So we get the expansion as,

\[{{(2x-y)}^{5}}=(32{{x}^{5}})-80{{x}^{4}}y+80{{x}^{3}}{{y}^{2}}-40{{x}^{2}}{{y}^{3}}+10x{{y}^{4}}-{{y}^{5}}\] .

Note: Read the question and see what is asked. Your concept regarding binomial theorem should be clear. Also, you must know the general formula of the binomial theorem. A proper assumption should be made. Do not make silly mistakes while substituting. Equate it in a proper manner and don't confuse yourself.

Complete step-by-step answer:

As the power increases the expansion becomes lengthy and tedious to calculate. A binomial expression that has been raised to a very large power can be easily calculated with the help of Binomial Theorem. Learn about all the details about binomial theorem like its definition, properties, applications.

According to the binomial theorem, the ${{(r+1)}^{th}}$term in the expansion of ${{(a+b)}^{n}}$is,

\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]

The above term is a general term or${{(r+1)}^{th}}$term. The total number of terms in the binomial expansion ${{(a+b)}^{n}}$is$(n+1)$, i.e. one more than the exponent$n$.

In the Binomial expression, we have

\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]

So the coefficients${}^{n}{{C}_{0}},{}^{n}{{C}_{1}},............,{}^{n}{{C}_{n}}$ are known as binomial or combinatorial coefficients.

You can see them${}^{n}{{C}_{r}}$being used here which is the binomial coefficient. The sum of the binomial coefficients will be ${{2}^{n}}$because, as we know that,

$\sum\nolimits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right)}={{2}^{n}}$

Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to${{2}^{n-1}}$.

The middle term depends upon the value of$n$,

If $n$ is even: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (odd).

If $n$ is odd: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (even).

If $n$is a positive integer,

\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]

So here $a=2x$, $b=-y$ and $n=5$ .

So using the binomial expansion,

\[{{(2x-y)}^{5}}={}^{5}{{C}_{0}}{{(2x)}^{5}}{{\left( -y \right)}^{0}}+{}^{5}{{C}_{1}}{{(2x)}^{5-1}}{{\left( -y \right)}^{1}}+{}^{5}{{C}_{2}}{{(2x)}^{5-2}}{{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}{{(2x)}^{5-3}}{{\left( -y \right)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{5-4}}{{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{(2x)}^{5-5}}{{\left( -y \right)}^{5}}\]

\[\begin{align}

& {{(2x-y)}^{5}}={}^{5}{{C}_{0}}{{(2x)}^{5}}+{}^{5}{{C}_{1}}{{(2x)}^{4}}\left( -y \right)+{}^{5}{{C}_{2}}{{(2x)}^{3}}{{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}{{(2x)}^{2}}{{\left( -y \right)}^{3}}+{}^{5}{{C}_{4}}{{(2x)}^{1}}{{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{(2x)}^{0}}{{\left( -y \right)}^{5}} \\

& {{(2x-y)}^{5}}=(32{{x}^{5}})+{}^{5}{{C}_{1}}(16{{x}^{4}})\left( -y \right)+{}^{5}{{C}_{2}}(8{{x}^{3}}){{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}(4{{x}^{2}}){{\left( -y \right)}^{3}}+{}^{5}{{C}_{4}}(2x){{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -y \right)}^{5}} \\

& {{(2x-y)}^{5}}=(32{{x}^{5}})+5(16{{x}^{4}})\left( -y \right)+\dfrac{5\times 4}{2\times 1}(8{{x}^{3}}){{\left( -y \right)}^{2}}+\dfrac{5\times 4\times 3}{3\times 2\times 1}(4{{x}^{2}}){{\left( -y \right)}^{3}}+\dfrac{5\times 4\times 3\times 2}{4\times 3\times 2\times 1}(2x){{\left( -y \right)}^{4}}+{{\left( -y \right)}^{5}} \\

& {{(2x-y)}^{5}}=(32{{x}^{5}})-80{{x}^{4}}y+80{{x}^{3}}{{y}^{2}}-40{{x}^{2}}{{y}^{3}}+10x{{y}^{4}}-{{y}^{5}} \\

\end{align}\]

So we get the expansion as,

\[{{(2x-y)}^{5}}=(32{{x}^{5}})-80{{x}^{4}}y+80{{x}^{3}}{{y}^{2}}-40{{x}^{2}}{{y}^{3}}+10x{{y}^{4}}-{{y}^{5}}\] .

Note: Read the question and see what is asked. Your concept regarding binomial theorem should be clear. Also, you must know the general formula of the binomial theorem. A proper assumption should be made. Do not make silly mistakes while substituting. Equate it in a proper manner and don't confuse yourself.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?