
Evaluate\[\int {\dfrac{1}{{({a^2} - {x^2})}}} dx\], where \[a > x\]
Answer
519.9k+ views
Hint: We are given here to integrate the function \[\dfrac{1}{{({a^2} - {x^2})}}\], where \[a > x\]. To do this, first of all we will expand the denominator using the formula of \[({a^2} - {b^2})\]. Then we will multiply and divide the numerator and denominator by \[2a\]. Now we will write the numerator as \[a + x + a - x\]. Now we will solve further and get the value of this integration.
Formula used: We use the following formulas here,
\[\ln a - \ln b = \ln \dfrac{a}{b}\]
\[\int {\dfrac{1}{x}dx = \ln x + c} \]
\[({a^2} - {b^2}) = (a + b)(a - b)\]
Complete step-by-step solution:
We are given to integrate\[\int {\dfrac{1}{{({a^2} - {x^2})}}} dx\].
We know that \[({a^2} - {b^2}) = (a + b)(a - b)\]. Using this formula, we write the function \[\dfrac{1}{{({a^2} - {x^2})}}\] as,
\[\dfrac{1}{{({a^2} - {x^2})}} = \dfrac{1}{{(a + x)(a - x)}}\]
We multiply and divide the numerator and denominator by \[2a\].
\[ \Rightarrow \dfrac{1}{{({a^2} - {x^2})}} = \dfrac{{2a}}{{2a}} \cdot \dfrac{1}{{(a + x)(a - x)}}\]
We now add and subtract \[x\] on the numerator as,
\[ \Rightarrow \dfrac{1}{{({a^2} - {x^2})}} = \dfrac{{2a}}{{2a}} \cdot \dfrac{{x - x}}{{(a + x)(a - x)}}\]
We will now rearrange this function,
\[ \Rightarrow \dfrac{1}{{({a^2} - {x^2})}} = \dfrac{{(a + x) + (a - x)}}{{2a(a + x)(a - x)}}\]
We will use this step in the integration. We replace \[\dfrac{1}{{({a^2} - {x^2})}}\] with RHS of above step as,
\[\int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\int {\dfrac{{(a + x) + (a - x)}}{{(a + x)(a - x)}}dx} \]
On simplifying further,
\[
\Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\int {\left( {\dfrac{{a + x}}{{(a + x)(a - x)}}} \right)dx + \dfrac{1}{{2a}}\int {\left( {\dfrac{{a - x}}{{(a + x)(a - x)}}} \right)dx} } \\
\Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\int {\left( {\dfrac{1}{{(a - x)}}} \right)dx + \dfrac{1}{{2a}}\int {\left( {\dfrac{1}{{(a + x)}}} \right)dx} } \\
\]
We know that \[\int {\dfrac{1}{x}dx = \ln x + c} \], using this above we get,
\[ \Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\left( { - \ln (a - x)} \right) + \dfrac{1}{{2a}}\left( {\ln \left( {a + x} \right)} \right)\]
Since, \[a > x\] we can safely put the value \[a - x\] in log function as \[a - x > 0\].
\[ \Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\left[ {\ln \left( {a + x} \right) - \ln (a - x)} \right]\]
As we know that \[\ln a - \ln b = \ln \dfrac{a}{b}\], we move ahead as,
\[ \Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\left[ {\ln \left( {\dfrac{{a + x}}{{a - x}}} \right)} \right]\]
Hence we have got the value of the given integration as \[\dfrac{1}{{2a}}\left[ {\ln \left( {\dfrac{{a + x}}{{a - x}}} \right)} \right]\].
Note: This is to note that we could have also done this integration by the method of partial fraction. But that method is a bit longer. Moreover, if you are not able to find the suitable modifications on the function you can always use a partial fraction method in such types of questions. In partial fraction, we will write the integration as,
\[\int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \int {\left[ {\dfrac{A}{{a + x}} + \dfrac{B}{{a - x}}} \right]dx} \]
We then find the value of \[A\] and \[B\] and then solve ahead.
Formula used: We use the following formulas here,
\[\ln a - \ln b = \ln \dfrac{a}{b}\]
\[\int {\dfrac{1}{x}dx = \ln x + c} \]
\[({a^2} - {b^2}) = (a + b)(a - b)\]
Complete step-by-step solution:
We are given to integrate\[\int {\dfrac{1}{{({a^2} - {x^2})}}} dx\].
We know that \[({a^2} - {b^2}) = (a + b)(a - b)\]. Using this formula, we write the function \[\dfrac{1}{{({a^2} - {x^2})}}\] as,
\[\dfrac{1}{{({a^2} - {x^2})}} = \dfrac{1}{{(a + x)(a - x)}}\]
We multiply and divide the numerator and denominator by \[2a\].
\[ \Rightarrow \dfrac{1}{{({a^2} - {x^2})}} = \dfrac{{2a}}{{2a}} \cdot \dfrac{1}{{(a + x)(a - x)}}\]
We now add and subtract \[x\] on the numerator as,
\[ \Rightarrow \dfrac{1}{{({a^2} - {x^2})}} = \dfrac{{2a}}{{2a}} \cdot \dfrac{{x - x}}{{(a + x)(a - x)}}\]
We will now rearrange this function,
\[ \Rightarrow \dfrac{1}{{({a^2} - {x^2})}} = \dfrac{{(a + x) + (a - x)}}{{2a(a + x)(a - x)}}\]
We will use this step in the integration. We replace \[\dfrac{1}{{({a^2} - {x^2})}}\] with RHS of above step as,
\[\int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\int {\dfrac{{(a + x) + (a - x)}}{{(a + x)(a - x)}}dx} \]
On simplifying further,
\[
\Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\int {\left( {\dfrac{{a + x}}{{(a + x)(a - x)}}} \right)dx + \dfrac{1}{{2a}}\int {\left( {\dfrac{{a - x}}{{(a + x)(a - x)}}} \right)dx} } \\
\Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\int {\left( {\dfrac{1}{{(a - x)}}} \right)dx + \dfrac{1}{{2a}}\int {\left( {\dfrac{1}{{(a + x)}}} \right)dx} } \\
\]
We know that \[\int {\dfrac{1}{x}dx = \ln x + c} \], using this above we get,
\[ \Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\left( { - \ln (a - x)} \right) + \dfrac{1}{{2a}}\left( {\ln \left( {a + x} \right)} \right)\]
Since, \[a > x\] we can safely put the value \[a - x\] in log function as \[a - x > 0\].
\[ \Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\left[ {\ln \left( {a + x} \right) - \ln (a - x)} \right]\]
As we know that \[\ln a - \ln b = \ln \dfrac{a}{b}\], we move ahead as,
\[ \Rightarrow \int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \dfrac{1}{{2a}}\left[ {\ln \left( {\dfrac{{a + x}}{{a - x}}} \right)} \right]\]
Hence we have got the value of the given integration as \[\dfrac{1}{{2a}}\left[ {\ln \left( {\dfrac{{a + x}}{{a - x}}} \right)} \right]\].
Note: This is to note that we could have also done this integration by the method of partial fraction. But that method is a bit longer. Moreover, if you are not able to find the suitable modifications on the function you can always use a partial fraction method in such types of questions. In partial fraction, we will write the integration as,
\[\int {\dfrac{1}{{({a^2} - {x^2})}}} dx = \int {\left[ {\dfrac{A}{{a + x}} + \dfrac{B}{{a - x}}} \right]dx} \]
We then find the value of \[A\] and \[B\] and then solve ahead.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

