Evaluate $\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$if it exist (where $\left\{ x \right\}$ denotes the fractional part of x).
Answer
Verified
507.9k+ views
Hint: Convert fractional part function to greatest integer function and solve by substituting \[x\] as \[\left( 0+h \right)\] or \[\left( 0-h \right)\].
Consider the given expression,
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Here $\left\{ x \right\}$ denotes the fractional part of x.
We know fractional part will always be non-negative and fractional part is greater than or equal to $'0'$ and less than $'1'$ .
Here in the given equation, we can apply the formula,
$\underset{x\to 0}{\mathop{\lim }}\,{{(1+x)}^{\dfrac{1}{x}}}=\underset{x\to 0}{\mathop{\lim }}\,\text{ e}$
Now, simplifying the given expression, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{e}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Cancelling the like terms, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( 1 \right)}^{\dfrac{1}{\left\{ x \right\}}}}...........(i)$
We know the expansion,
${{a}^{x}}=1+\dfrac{x\ln a}{1!}+\dfrac{{{x}^{2}}{{\ln }^{2}}a}{2!}+.....$
Applying this in equation (i), we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{\left\{ x \right\}\ln (1)}{1!}+\dfrac{{{\left\{ x \right\}}^{2}}{{\ln }^{2}}(1)}{2!}+..... \right)\]
But we know, $\ln 1=0$ , so above equation becomes,
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{0}{1!}+\dfrac{0}{2!}+..... \right)\]
As we can see that the limit is free from $'x'$ term. So the limit of the function will be constant term at any point. So we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=1\]
Note: Students usually don’t learn expansions and are struck while solving the questions.
See the fractional part the student think it is very difficult.
They start applying,
\[x=[x]+\{x\}\]
\[\therefore \{x\}=x-[x]\]
And substitute this in the given expression, leading to more confusion and ending up in wrong answer.
Consider the given expression,
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Here $\left\{ x \right\}$ denotes the fractional part of x.
We know fractional part will always be non-negative and fractional part is greater than or equal to $'0'$ and less than $'1'$ .
Here in the given equation, we can apply the formula,
$\underset{x\to 0}{\mathop{\lim }}\,{{(1+x)}^{\dfrac{1}{x}}}=\underset{x\to 0}{\mathop{\lim }}\,\text{ e}$
Now, simplifying the given expression, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{e}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Cancelling the like terms, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( 1 \right)}^{\dfrac{1}{\left\{ x \right\}}}}...........(i)$
We know the expansion,
${{a}^{x}}=1+\dfrac{x\ln a}{1!}+\dfrac{{{x}^{2}}{{\ln }^{2}}a}{2!}+.....$
Applying this in equation (i), we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{\left\{ x \right\}\ln (1)}{1!}+\dfrac{{{\left\{ x \right\}}^{2}}{{\ln }^{2}}(1)}{2!}+..... \right)\]
But we know, $\ln 1=0$ , so above equation becomes,
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{0}{1!}+\dfrac{0}{2!}+..... \right)\]
As we can see that the limit is free from $'x'$ term. So the limit of the function will be constant term at any point. So we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=1\]
Note: Students usually don’t learn expansions and are struck while solving the questions.
See the fractional part the student think it is very difficult.
They start applying,
\[x=[x]+\{x\}\]
\[\therefore \{x\}=x-[x]\]
And substitute this in the given expression, leading to more confusion and ending up in wrong answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE