Answer
Verified
477k+ views
Hint: Convert fractional part function to greatest integer function and solve by substituting \[x\] as \[\left( 0+h \right)\] or \[\left( 0-h \right)\].
Consider the given expression,
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Here $\left\{ x \right\}$ denotes the fractional part of x.
We know fractional part will always be non-negative and fractional part is greater than or equal to $'0'$ and less than $'1'$ .
Here in the given equation, we can apply the formula,
$\underset{x\to 0}{\mathop{\lim }}\,{{(1+x)}^{\dfrac{1}{x}}}=\underset{x\to 0}{\mathop{\lim }}\,\text{ e}$
Now, simplifying the given expression, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{e}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Cancelling the like terms, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( 1 \right)}^{\dfrac{1}{\left\{ x \right\}}}}...........(i)$
We know the expansion,
${{a}^{x}}=1+\dfrac{x\ln a}{1!}+\dfrac{{{x}^{2}}{{\ln }^{2}}a}{2!}+.....$
Applying this in equation (i), we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{\left\{ x \right\}\ln (1)}{1!}+\dfrac{{{\left\{ x \right\}}^{2}}{{\ln }^{2}}(1)}{2!}+..... \right)\]
But we know, $\ln 1=0$ , so above equation becomes,
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{0}{1!}+\dfrac{0}{2!}+..... \right)\]
As we can see that the limit is free from $'x'$ term. So the limit of the function will be constant term at any point. So we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=1\]
Note: Students usually don’t learn expansions and are struck while solving the questions.
See the fractional part the student think it is very difficult.
They start applying,
\[x=[x]+\{x\}\]
\[\therefore \{x\}=x-[x]\]
And substitute this in the given expression, leading to more confusion and ending up in wrong answer.
Consider the given expression,
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Here $\left\{ x \right\}$ denotes the fractional part of x.
We know fractional part will always be non-negative and fractional part is greater than or equal to $'0'$ and less than $'1'$ .
Here in the given equation, we can apply the formula,
$\underset{x\to 0}{\mathop{\lim }}\,{{(1+x)}^{\dfrac{1}{x}}}=\underset{x\to 0}{\mathop{\lim }}\,\text{ e}$
Now, simplifying the given expression, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{e}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Cancelling the like terms, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( 1 \right)}^{\dfrac{1}{\left\{ x \right\}}}}...........(i)$
We know the expansion,
${{a}^{x}}=1+\dfrac{x\ln a}{1!}+\dfrac{{{x}^{2}}{{\ln }^{2}}a}{2!}+.....$
Applying this in equation (i), we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{\left\{ x \right\}\ln (1)}{1!}+\dfrac{{{\left\{ x \right\}}^{2}}{{\ln }^{2}}(1)}{2!}+..... \right)\]
But we know, $\ln 1=0$ , so above equation becomes,
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{0}{1!}+\dfrac{0}{2!}+..... \right)\]
As we can see that the limit is free from $'x'$ term. So the limit of the function will be constant term at any point. So we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=1\]
Note: Students usually don’t learn expansions and are struck while solving the questions.
See the fractional part the student think it is very difficult.
They start applying,
\[x=[x]+\{x\}\]
\[\therefore \{x\}=x-[x]\]
And substitute this in the given expression, leading to more confusion and ending up in wrong answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE