Evaluate the value of \[\int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]
Last updated date: 23rd Mar 2023
•
Total views: 309k
•
Views today: 8.87k
Answer
309k+ views
Hint: - Use the property of definite integral \[\int_0^{2a} {f\left( x \right)dx = 2}
\int_0^a {f\left( x \right)dx} ,{\text{ if }}f\left( {2a - x} \right) = f\left( x \right)\]
, and \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt\]. Definite integral is the one which has upper and lower limits whereas indefinite integral no upper and lower limits are there.
Let \[I = \int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]
As we know \[\left( {1 + \cos x} \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right)\]
Substitute this value in the integral
\[{\text{I = }}\int_0^\pi {\log \left( {2{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)dx} \]
As we know,\[\log \left( {ab} \right) = \log a + \log b\], so apply this property
\[
\Rightarrow {\text{I = }}\int_0^\pi {\left( {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)}
\right) + \log 2} \right)dx} \\
\Rightarrow I = \int_0^\pi {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx \\
\]
Now we know \[\log {a^2} = 2\log a\]so apply this property
\[ \Rightarrow I = 2\int_0^\pi {\log \left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx\]
Now, let \[\dfrac{x}{2} = t.................\left( 1 \right)\]
If \[x = 0 \Rightarrow t = 0\]
If \[x = \pi \Rightarrow t = \dfrac{\pi }{2}\]
Differentiate equation (1) w.r.t.$x$
\[ \Rightarrow dx = 2dt\]
Substitute these values in the integral
\[
\Rightarrow I = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} 2dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = {I_1} + {I_2} \\
\]
Now first solve \[{I_1}\]
\[ \Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)}
dt.................\left( 2 \right)\]
As we know \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt............\left( 3
\right)\]
Apply this definite integral property in \[{I_1}\]
\[
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( {\dfrac{\pi }{2} - t}
\right)} \right)} dt \\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt.....................\left(
4 \right) \\
\]
Now add equation (2) and (4)
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt +
4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt \\
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t \times \sin t} \right)} dt
\\
\]
As we know \[2\cos t \times \sin t = \sin 2t\]so apply this
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2t} \right)} dt \\
\]
Let, \[{\text{2t = v}}...........\left( 5 \right)\]
If, \[{\text{ t = 0}} \Rightarrow {\text{v = 0}}\]
If, \[{\text{t = }}\dfrac{\pi }{2} \Rightarrow v = \pi \]
Now, differentiate equation (5) w.r.t.$t$
\[ \Rightarrow {\text{2dt = dv}}\]
So substitute these values in the integral
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^\pi {\log \left( {\sin v} \right)} \dfrac{{dv}}{2} \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log \left( {\sin v} \right)} dv \\
\]
As we know \[\int_0^{2a} {f\left( x \right)dx = 2} \int_0^a {f\left( x \right)dx} ,{\text{ if
}}f\left( {2a - x} \right) = f\left( x \right)\]
So, comparing from above equation $2a = \pi , \Rightarrow a = \dfrac{\pi }{2}$
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin v} \right)} dv\]
Now from equation (3)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin \left( {\dfrac{\pi }{2} - v} \right)} \right)} dv \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos v} \right)} dv \\
\]
As we know in definite integral we change the variable so we change the variable to $t$ in
the second integral in the above equation.
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt\]
From equation (2)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
\dfrac{{{I_1}}}{2} \\
\Rightarrow \dfrac{{{I_1}}}{2} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt
\\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt \\
I = {I_1} + {I_2} \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log 2dx} \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ t \right]_0^{\dfrac{\pi }{2}} + \log
2\left[ x \right]_0^\pi \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ {\dfrac{\pi }{2}} \right] + \log 2\left[
\pi \right] \\
\Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right) + \pi \log 2 \\
\]
Now, as we know \[\log \left( {\dfrac{1}{2}} \right) = - \log 2\]
\[ \Rightarrow I = - 2\pi \log 2 + \pi \log 2{\text{ }} \Rightarrow I = - \pi \log 2\]
So, this is the required value of the integral.
Note: - In such types of questions the key concept we have to remember is that always
remember all the properties of definite integral which is stated above, then using this
properties simplify the integral and use some base logarithmic and trigonometry properties
which is also stated above, then simplify we will get the required answer.
\int_0^a {f\left( x \right)dx} ,{\text{ if }}f\left( {2a - x} \right) = f\left( x \right)\]
, and \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt\]. Definite integral is the one which has upper and lower limits whereas indefinite integral no upper and lower limits are there.
Let \[I = \int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]
As we know \[\left( {1 + \cos x} \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right)\]
Substitute this value in the integral
\[{\text{I = }}\int_0^\pi {\log \left( {2{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)dx} \]
As we know,\[\log \left( {ab} \right) = \log a + \log b\], so apply this property
\[
\Rightarrow {\text{I = }}\int_0^\pi {\left( {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)}
\right) + \log 2} \right)dx} \\
\Rightarrow I = \int_0^\pi {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx \\
\]
Now we know \[\log {a^2} = 2\log a\]so apply this property
\[ \Rightarrow I = 2\int_0^\pi {\log \left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx\]
Now, let \[\dfrac{x}{2} = t.................\left( 1 \right)\]
If \[x = 0 \Rightarrow t = 0\]
If \[x = \pi \Rightarrow t = \dfrac{\pi }{2}\]
Differentiate equation (1) w.r.t.$x$
\[ \Rightarrow dx = 2dt\]
Substitute these values in the integral
\[
\Rightarrow I = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} 2dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = {I_1} + {I_2} \\
\]
Now first solve \[{I_1}\]
\[ \Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)}
dt.................\left( 2 \right)\]
As we know \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt............\left( 3
\right)\]
Apply this definite integral property in \[{I_1}\]
\[
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( {\dfrac{\pi }{2} - t}
\right)} \right)} dt \\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt.....................\left(
4 \right) \\
\]
Now add equation (2) and (4)
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt +
4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt \\
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t \times \sin t} \right)} dt
\\
\]
As we know \[2\cos t \times \sin t = \sin 2t\]so apply this
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2t} \right)} dt \\
\]
Let, \[{\text{2t = v}}...........\left( 5 \right)\]
If, \[{\text{ t = 0}} \Rightarrow {\text{v = 0}}\]
If, \[{\text{t = }}\dfrac{\pi }{2} \Rightarrow v = \pi \]
Now, differentiate equation (5) w.r.t.$t$
\[ \Rightarrow {\text{2dt = dv}}\]
So substitute these values in the integral
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^\pi {\log \left( {\sin v} \right)} \dfrac{{dv}}{2} \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log \left( {\sin v} \right)} dv \\
\]
As we know \[\int_0^{2a} {f\left( x \right)dx = 2} \int_0^a {f\left( x \right)dx} ,{\text{ if
}}f\left( {2a - x} \right) = f\left( x \right)\]
So, comparing from above equation $2a = \pi , \Rightarrow a = \dfrac{\pi }{2}$
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin v} \right)} dv\]
Now from equation (3)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin \left( {\dfrac{\pi }{2} - v} \right)} \right)} dv \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos v} \right)} dv \\
\]
As we know in definite integral we change the variable so we change the variable to $t$ in
the second integral in the above equation.
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt\]
From equation (2)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
\dfrac{{{I_1}}}{2} \\
\Rightarrow \dfrac{{{I_1}}}{2} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt
\\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt \\
I = {I_1} + {I_2} \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log 2dx} \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ t \right]_0^{\dfrac{\pi }{2}} + \log
2\left[ x \right]_0^\pi \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ {\dfrac{\pi }{2}} \right] + \log 2\left[
\pi \right] \\
\Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right) + \pi \log 2 \\
\]
Now, as we know \[\log \left( {\dfrac{1}{2}} \right) = - \log 2\]
\[ \Rightarrow I = - 2\pi \log 2 + \pi \log 2{\text{ }} \Rightarrow I = - \pi \log 2\]
So, this is the required value of the integral.
Note: - In such types of questions the key concept we have to remember is that always
remember all the properties of definite integral which is stated above, then using this
properties simplify the integral and use some base logarithmic and trigonometry properties
which is also stated above, then simplify we will get the required answer.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
