
Evaluate the value of \[\int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]
Answer
607.8k+ views
Hint: - Use the property of definite integral \[\int_0^{2a} {f\left( x \right)dx = 2}
\int_0^a {f\left( x \right)dx} ,{\text{ if }}f\left( {2a - x} \right) = f\left( x \right)\]
, and \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt\]. Definite integral is the one which has upper and lower limits whereas indefinite integral no upper and lower limits are there.
Let \[I = \int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]
As we know \[\left( {1 + \cos x} \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right)\]
Substitute this value in the integral
\[{\text{I = }}\int_0^\pi {\log \left( {2{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)dx} \]
As we know,\[\log \left( {ab} \right) = \log a + \log b\], so apply this property
\[
\Rightarrow {\text{I = }}\int_0^\pi {\left( {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)}
\right) + \log 2} \right)dx} \\
\Rightarrow I = \int_0^\pi {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx \\
\]
Now we know \[\log {a^2} = 2\log a\]so apply this property
\[ \Rightarrow I = 2\int_0^\pi {\log \left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx\]
Now, let \[\dfrac{x}{2} = t.................\left( 1 \right)\]
If \[x = 0 \Rightarrow t = 0\]
If \[x = \pi \Rightarrow t = \dfrac{\pi }{2}\]
Differentiate equation (1) w.r.t.$x$
\[ \Rightarrow dx = 2dt\]
Substitute these values in the integral
\[
\Rightarrow I = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} 2dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = {I_1} + {I_2} \\
\]
Now first solve \[{I_1}\]
\[ \Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)}
dt.................\left( 2 \right)\]
As we know \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt............\left( 3
\right)\]
Apply this definite integral property in \[{I_1}\]
\[
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( {\dfrac{\pi }{2} - t}
\right)} \right)} dt \\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt.....................\left(
4 \right) \\
\]
Now add equation (2) and (4)
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt +
4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt \\
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t \times \sin t} \right)} dt
\\
\]
As we know \[2\cos t \times \sin t = \sin 2t\]so apply this
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2t} \right)} dt \\
\]
Let, \[{\text{2t = v}}...........\left( 5 \right)\]
If, \[{\text{ t = 0}} \Rightarrow {\text{v = 0}}\]
If, \[{\text{t = }}\dfrac{\pi }{2} \Rightarrow v = \pi \]
Now, differentiate equation (5) w.r.t.$t$
\[ \Rightarrow {\text{2dt = dv}}\]
So substitute these values in the integral
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^\pi {\log \left( {\sin v} \right)} \dfrac{{dv}}{2} \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log \left( {\sin v} \right)} dv \\
\]
As we know \[\int_0^{2a} {f\left( x \right)dx = 2} \int_0^a {f\left( x \right)dx} ,{\text{ if
}}f\left( {2a - x} \right) = f\left( x \right)\]
So, comparing from above equation $2a = \pi , \Rightarrow a = \dfrac{\pi }{2}$
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin v} \right)} dv\]
Now from equation (3)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin \left( {\dfrac{\pi }{2} - v} \right)} \right)} dv \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos v} \right)} dv \\
\]
As we know in definite integral we change the variable so we change the variable to $t$ in
the second integral in the above equation.
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt\]
From equation (2)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
\dfrac{{{I_1}}}{2} \\
\Rightarrow \dfrac{{{I_1}}}{2} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt
\\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt \\
I = {I_1} + {I_2} \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log 2dx} \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ t \right]_0^{\dfrac{\pi }{2}} + \log
2\left[ x \right]_0^\pi \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ {\dfrac{\pi }{2}} \right] + \log 2\left[
\pi \right] \\
\Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right) + \pi \log 2 \\
\]
Now, as we know \[\log \left( {\dfrac{1}{2}} \right) = - \log 2\]
\[ \Rightarrow I = - 2\pi \log 2 + \pi \log 2{\text{ }} \Rightarrow I = - \pi \log 2\]
So, this is the required value of the integral.
Note: - In such types of questions the key concept we have to remember is that always
remember all the properties of definite integral which is stated above, then using this
properties simplify the integral and use some base logarithmic and trigonometry properties
which is also stated above, then simplify we will get the required answer.
\int_0^a {f\left( x \right)dx} ,{\text{ if }}f\left( {2a - x} \right) = f\left( x \right)\]
, and \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt\]. Definite integral is the one which has upper and lower limits whereas indefinite integral no upper and lower limits are there.
Let \[I = \int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]
As we know \[\left( {1 + \cos x} \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right)\]
Substitute this value in the integral
\[{\text{I = }}\int_0^\pi {\log \left( {2{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)dx} \]
As we know,\[\log \left( {ab} \right) = \log a + \log b\], so apply this property
\[
\Rightarrow {\text{I = }}\int_0^\pi {\left( {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)}
\right) + \log 2} \right)dx} \\
\Rightarrow I = \int_0^\pi {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx \\
\]
Now we know \[\log {a^2} = 2\log a\]so apply this property
\[ \Rightarrow I = 2\int_0^\pi {\log \left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx\]
Now, let \[\dfrac{x}{2} = t.................\left( 1 \right)\]
If \[x = 0 \Rightarrow t = 0\]
If \[x = \pi \Rightarrow t = \dfrac{\pi }{2}\]
Differentiate equation (1) w.r.t.$x$
\[ \Rightarrow dx = 2dt\]
Substitute these values in the integral
\[
\Rightarrow I = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} 2dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = {I_1} + {I_2} \\
\]
Now first solve \[{I_1}\]
\[ \Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)}
dt.................\left( 2 \right)\]
As we know \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt............\left( 3
\right)\]
Apply this definite integral property in \[{I_1}\]
\[
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( {\dfrac{\pi }{2} - t}
\right)} \right)} dt \\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt.....................\left(
4 \right) \\
\]
Now add equation (2) and (4)
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt +
4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt \\
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t \times \sin t} \right)} dt
\\
\]
As we know \[2\cos t \times \sin t = \sin 2t\]so apply this
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2t} \right)} dt \\
\]
Let, \[{\text{2t = v}}...........\left( 5 \right)\]
If, \[{\text{ t = 0}} \Rightarrow {\text{v = 0}}\]
If, \[{\text{t = }}\dfrac{\pi }{2} \Rightarrow v = \pi \]
Now, differentiate equation (5) w.r.t.$t$
\[ \Rightarrow {\text{2dt = dv}}\]
So substitute these values in the integral
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^\pi {\log \left( {\sin v} \right)} \dfrac{{dv}}{2} \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log \left( {\sin v} \right)} dv \\
\]
As we know \[\int_0^{2a} {f\left( x \right)dx = 2} \int_0^a {f\left( x \right)dx} ,{\text{ if
}}f\left( {2a - x} \right) = f\left( x \right)\]
So, comparing from above equation $2a = \pi , \Rightarrow a = \dfrac{\pi }{2}$
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin v} \right)} dv\]
Now from equation (3)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin \left( {\dfrac{\pi }{2} - v} \right)} \right)} dv \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos v} \right)} dv \\
\]
As we know in definite integral we change the variable so we change the variable to $t$ in
the second integral in the above equation.
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt\]
From equation (2)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
\dfrac{{{I_1}}}{2} \\
\Rightarrow \dfrac{{{I_1}}}{2} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt
\\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt \\
I = {I_1} + {I_2} \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log 2dx} \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ t \right]_0^{\dfrac{\pi }{2}} + \log
2\left[ x \right]_0^\pi \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ {\dfrac{\pi }{2}} \right] + \log 2\left[
\pi \right] \\
\Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right) + \pi \log 2 \\
\]
Now, as we know \[\log \left( {\dfrac{1}{2}} \right) = - \log 2\]
\[ \Rightarrow I = - 2\pi \log 2 + \pi \log 2{\text{ }} \Rightarrow I = - \pi \log 2\]
So, this is the required value of the integral.
Note: - In such types of questions the key concept we have to remember is that always
remember all the properties of definite integral which is stated above, then using this
properties simplify the integral and use some base logarithmic and trigonometry properties
which is also stated above, then simplify we will get the required answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

