Evaluate the value of \[\int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]
Answer
363.9k+ views
Hint: - Use the property of definite integral \[\int_0^{2a} {f\left( x \right)dx = 2}
\int_0^a {f\left( x \right)dx} ,{\text{ if }}f\left( {2a - x} \right) = f\left( x \right)\]
, and \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt\]. Definite integral is the one which has upper and lower limits whereas indefinite integral no upper and lower limits are there.
Let \[I = \int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]
As we know \[\left( {1 + \cos x} \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right)\]
Substitute this value in the integral
\[{\text{I = }}\int_0^\pi {\log \left( {2{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)dx} \]
As we know,\[\log \left( {ab} \right) = \log a + \log b\], so apply this property
\[
\Rightarrow {\text{I = }}\int_0^\pi {\left( {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)}
\right) + \log 2} \right)dx} \\
\Rightarrow I = \int_0^\pi {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx \\
\]
Now we know \[\log {a^2} = 2\log a\]so apply this property
\[ \Rightarrow I = 2\int_0^\pi {\log \left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx\]
Now, let \[\dfrac{x}{2} = t.................\left( 1 \right)\]
If \[x = 0 \Rightarrow t = 0\]
If \[x = \pi \Rightarrow t = \dfrac{\pi }{2}\]
Differentiate equation (1) w.r.t.$x$
\[ \Rightarrow dx = 2dt\]
Substitute these values in the integral
\[
\Rightarrow I = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} 2dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = {I_1} + {I_2} \\
\]
Now first solve \[{I_1}\]
\[ \Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)}
dt.................\left( 2 \right)\]
As we know \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt............\left( 3
\right)\]
Apply this definite integral property in \[{I_1}\]
\[
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( {\dfrac{\pi }{2} - t}
\right)} \right)} dt \\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt.....................\left(
4 \right) \\
\]
Now add equation (2) and (4)
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt +
4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt \\
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t \times \sin t} \right)} dt
\\
\]
As we know \[2\cos t \times \sin t = \sin 2t\]so apply this
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2t} \right)} dt \\
\]
Let, \[{\text{2t = v}}...........\left( 5 \right)\]
If, \[{\text{ t = 0}} \Rightarrow {\text{v = 0}}\]
If, \[{\text{t = }}\dfrac{\pi }{2} \Rightarrow v = \pi \]
Now, differentiate equation (5) w.r.t.$t$
\[ \Rightarrow {\text{2dt = dv}}\]
So substitute these values in the integral
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^\pi {\log \left( {\sin v} \right)} \dfrac{{dv}}{2} \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log \left( {\sin v} \right)} dv \\
\]
As we know \[\int_0^{2a} {f\left( x \right)dx = 2} \int_0^a {f\left( x \right)dx} ,{\text{ if
}}f\left( {2a - x} \right) = f\left( x \right)\]
So, comparing from above equation $2a = \pi , \Rightarrow a = \dfrac{\pi }{2}$
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin v} \right)} dv\]
Now from equation (3)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin \left( {\dfrac{\pi }{2} - v} \right)} \right)} dv \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos v} \right)} dv \\
\]
As we know in definite integral we change the variable so we change the variable to $t$ in
the second integral in the above equation.
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt\]
From equation (2)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
\dfrac{{{I_1}}}{2} \\
\Rightarrow \dfrac{{{I_1}}}{2} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt
\\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt \\
I = {I_1} + {I_2} \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log 2dx} \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ t \right]_0^{\dfrac{\pi }{2}} + \log
2\left[ x \right]_0^\pi \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ {\dfrac{\pi }{2}} \right] + \log 2\left[
\pi \right] \\
\Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right) + \pi \log 2 \\
\]
Now, as we know \[\log \left( {\dfrac{1}{2}} \right) = - \log 2\]
\[ \Rightarrow I = - 2\pi \log 2 + \pi \log 2{\text{ }} \Rightarrow I = - \pi \log 2\]
So, this is the required value of the integral.
Note: - In such types of questions the key concept we have to remember is that always
remember all the properties of definite integral which is stated above, then using this
properties simplify the integral and use some base logarithmic and trigonometry properties
which is also stated above, then simplify we will get the required answer.
\int_0^a {f\left( x \right)dx} ,{\text{ if }}f\left( {2a - x} \right) = f\left( x \right)\]
, and \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt\]. Definite integral is the one which has upper and lower limits whereas indefinite integral no upper and lower limits are there.
Let \[I = \int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]
As we know \[\left( {1 + \cos x} \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right)\]
Substitute this value in the integral
\[{\text{I = }}\int_0^\pi {\log \left( {2{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)dx} \]
As we know,\[\log \left( {ab} \right) = \log a + \log b\], so apply this property
\[
\Rightarrow {\text{I = }}\int_0^\pi {\left( {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)}
\right) + \log 2} \right)dx} \\
\Rightarrow I = \int_0^\pi {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx \\
\]
Now we know \[\log {a^2} = 2\log a\]so apply this property
\[ \Rightarrow I = 2\int_0^\pi {\log \left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx\]
Now, let \[\dfrac{x}{2} = t.................\left( 1 \right)\]
If \[x = 0 \Rightarrow t = 0\]
If \[x = \pi \Rightarrow t = \dfrac{\pi }{2}\]
Differentiate equation (1) w.r.t.$x$
\[ \Rightarrow dx = 2dt\]
Substitute these values in the integral
\[
\Rightarrow I = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} 2dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = {I_1} + {I_2} \\
\]
Now first solve \[{I_1}\]
\[ \Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)}
dt.................\left( 2 \right)\]
As we know \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt............\left( 3
\right)\]
Apply this definite integral property in \[{I_1}\]
\[
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( {\dfrac{\pi }{2} - t}
\right)} \right)} dt \\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt.....................\left(
4 \right) \\
\]
Now add equation (2) and (4)
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt +
4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt \\
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t \times \sin t} \right)} dt
\\
\]
As we know \[2\cos t \times \sin t = \sin 2t\]so apply this
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2t} \right)} dt \\
\]
Let, \[{\text{2t = v}}...........\left( 5 \right)\]
If, \[{\text{ t = 0}} \Rightarrow {\text{v = 0}}\]
If, \[{\text{t = }}\dfrac{\pi }{2} \Rightarrow v = \pi \]
Now, differentiate equation (5) w.r.t.$t$
\[ \Rightarrow {\text{2dt = dv}}\]
So substitute these values in the integral
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^\pi {\log \left( {\sin v} \right)} \dfrac{{dv}}{2} \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log \left( {\sin v} \right)} dv \\
\]
As we know \[\int_0^{2a} {f\left( x \right)dx = 2} \int_0^a {f\left( x \right)dx} ,{\text{ if
}}f\left( {2a - x} \right) = f\left( x \right)\]
So, comparing from above equation $2a = \pi , \Rightarrow a = \dfrac{\pi }{2}$
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin v} \right)} dv\]
Now from equation (3)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin \left( {\dfrac{\pi }{2} - v} \right)} \right)} dv \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos v} \right)} dv \\
\]
As we know in definite integral we change the variable so we change the variable to $t$ in
the second integral in the above equation.
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt\]
From equation (2)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
\dfrac{{{I_1}}}{2} \\
\Rightarrow \dfrac{{{I_1}}}{2} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt
\\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt \\
I = {I_1} + {I_2} \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log 2dx} \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ t \right]_0^{\dfrac{\pi }{2}} + \log
2\left[ x \right]_0^\pi \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ {\dfrac{\pi }{2}} \right] + \log 2\left[
\pi \right] \\
\Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right) + \pi \log 2 \\
\]
Now, as we know \[\log \left( {\dfrac{1}{2}} \right) = - \log 2\]
\[ \Rightarrow I = - 2\pi \log 2 + \pi \log 2{\text{ }} \Rightarrow I = - \pi \log 2\]
So, this is the required value of the integral.
Note: - In such types of questions the key concept we have to remember is that always
remember all the properties of definite integral which is stated above, then using this
properties simplify the integral and use some base logarithmic and trigonometry properties
which is also stated above, then simplify we will get the required answer.
Last updated date: 18th Sep 2023
•
Total views: 363.9k
•
Views today: 10.63k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG
