Answer
Verified
438.6k+ views
Hint: We know a formula $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ and here, we have to evaluate the value of $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$ which resembles with the right hand side of the above written formula. So, we can apply the above given formula to find the required value of the above given question.
Complete step-by-step solution:
Here, the given expression is $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$.
We know a formula $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
And when we compare the right hand side of the above given formula with the given expression in above question. We get, $A = 3{6^ \circ }$ and $B = {9^ \circ }$.
So, by applying above formula we can write $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$ as $\sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$.
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin {45^ \circ }$
By using the trigonometry table we can find the value of $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$.
So, the value of $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$is $\dfrac{1}{{\sqrt 2 }}$.
Thus, option (B) is correct.
Note: Similarly, some important formulae which may be used to solve similar types of problems.
(1) $\sin \left( {A - B} \right) = \sin A\cos B - \cos B\sin A$ .
(2) $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$.
(3) $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$.
While applying these formulae firstly we have to make sure that the given expression must resemble the right side of the above given formulae. After this we have to find the value of $\cos ine$ and $\sin $ of some angles and that value can be found by using a trigonometry table.
If the above problem is modified as $\sin {36^ \circ }\cos {9^ \circ } - \cos {36^ \circ }\sin {9^ \circ }$ then we have to apply the first formula given in the hint section.
Similarly, we can apply a second formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } - \sin {36^ \circ }\sin {9^ \circ }$.
Similarly, we can apply a third formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } + \sin {36^ \circ }\sin {9^ \circ }$.
Complete step-by-step solution:
Here, the given expression is $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$.
We know a formula $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
And when we compare the right hand side of the above given formula with the given expression in above question. We get, $A = 3{6^ \circ }$ and $B = {9^ \circ }$.
So, by applying above formula we can write $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$ as $\sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$.
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin {45^ \circ }$
By using the trigonometry table we can find the value of $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$.
So, the value of $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$is $\dfrac{1}{{\sqrt 2 }}$.
Thus, option (B) is correct.
Note: Similarly, some important formulae which may be used to solve similar types of problems.
(1) $\sin \left( {A - B} \right) = \sin A\cos B - \cos B\sin A$ .
(2) $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$.
(3) $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$.
While applying these formulae firstly we have to make sure that the given expression must resemble the right side of the above given formulae. After this we have to find the value of $\cos ine$ and $\sin $ of some angles and that value can be found by using a trigonometry table.
If the above problem is modified as $\sin {36^ \circ }\cos {9^ \circ } - \cos {36^ \circ }\sin {9^ \circ }$ then we have to apply the first formula given in the hint section.
Similarly, we can apply a second formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } - \sin {36^ \circ }\sin {9^ \circ }$.
Similarly, we can apply a third formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } + \sin {36^ \circ }\sin {9^ \circ }$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE