
Evaluate the value of following:
$\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$
(A) $\dfrac{{ - 1}}{{\sqrt 2 }}$
(B) $\dfrac{1}{{\sqrt 2 }}$
(C) $\sqrt 2 $
(D) $ - \sqrt 2 $
Answer
558.9k+ views
Hint: We know a formula $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ and here, we have to evaluate the value of $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$ which resembles with the right hand side of the above written formula. So, we can apply the above given formula to find the required value of the above given question.
Complete step-by-step solution:
Here, the given expression is $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$.
We know a formula $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
And when we compare the right hand side of the above given formula with the given expression in above question. We get, $A = 3{6^ \circ }$ and $B = {9^ \circ }$.
So, by applying above formula we can write $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$ as $\sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$.
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin {45^ \circ }$
By using the trigonometry table we can find the value of $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$.
So, the value of $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$is $\dfrac{1}{{\sqrt 2 }}$.
Thus, option (B) is correct.
Note: Similarly, some important formulae which may be used to solve similar types of problems.
(1) $\sin \left( {A - B} \right) = \sin A\cos B - \cos B\sin A$ .
(2) $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$.
(3) $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$.
While applying these formulae firstly we have to make sure that the given expression must resemble the right side of the above given formulae. After this we have to find the value of $\cos ine$ and $\sin $ of some angles and that value can be found by using a trigonometry table.
If the above problem is modified as $\sin {36^ \circ }\cos {9^ \circ } - \cos {36^ \circ }\sin {9^ \circ }$ then we have to apply the first formula given in the hint section.
Similarly, we can apply a second formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } - \sin {36^ \circ }\sin {9^ \circ }$.
Similarly, we can apply a third formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } + \sin {36^ \circ }\sin {9^ \circ }$.
Complete step-by-step solution:
Here, the given expression is $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$.
We know a formula $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
And when we compare the right hand side of the above given formula with the given expression in above question. We get, $A = 3{6^ \circ }$ and $B = {9^ \circ }$.
So, by applying above formula we can write $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$ as $\sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$.
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin {45^ \circ }$
By using the trigonometry table we can find the value of $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$.
So, the value of $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$is $\dfrac{1}{{\sqrt 2 }}$.
Thus, option (B) is correct.
Note: Similarly, some important formulae which may be used to solve similar types of problems.
(1) $\sin \left( {A - B} \right) = \sin A\cos B - \cos B\sin A$ .
(2) $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$.
(3) $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$.
While applying these formulae firstly we have to make sure that the given expression must resemble the right side of the above given formulae. After this we have to find the value of $\cos ine$ and $\sin $ of some angles and that value can be found by using a trigonometry table.
If the above problem is modified as $\sin {36^ \circ }\cos {9^ \circ } - \cos {36^ \circ }\sin {9^ \circ }$ then we have to apply the first formula given in the hint section.
Similarly, we can apply a second formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } - \sin {36^ \circ }\sin {9^ \circ }$.
Similarly, we can apply a third formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } + \sin {36^ \circ }\sin {9^ \circ }$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

