Answer

Verified

410.7k+ views

**Hint:**We know a formula $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ . By applying this formula we have to expand the $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ and by putting the known value of $\cos ine$ function we will get the required value.

**Complete step-by-step solution:**

Here, We have to evaluate the value of $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$.

By applying the above written, formula we can expand $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ as

$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \cos \dfrac{{3\pi }}{2}\cos \theta - \sin \dfrac{{3\pi }}{2}\sin \theta $

By studying trigonometric value table, we will get the value of $\cos \dfrac{{3\pi }}{2} = 0$ and $\sin \dfrac{{3\pi }}{2} = - 1$. And put these values in the above equation. This will give

$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \left( 0 \right)\cos \theta - \left( { - 1} \right)\sin \theta $

Solving this we get,

$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = 0 + \sin \theta $

$\therefore \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \sin \theta $

Thus, the required value of $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ is equal to $\sin \theta $.

**Hence, Option (C) is correct for this question.**

**Note:**Alternatively, this problem can be solved by writing the trigonometric expression $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ as $\cos \left( {\pi + \left( {\dfrac{\pi }{2} + \theta } \right)} \right)$ because adding $\pi $and $\left( {\dfrac{\pi }{2} + \theta } \right)$ we get the same value as $\left( {\dfrac{{3\pi }}{2} + \theta } \right)$. it is clearly visible that this angle lies in the third quadrant and we know that the value of $\cos ine$ is negative in the third quadrant so, the value of$\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = - \cos \left( {\dfrac{\pi }{2} + \theta } \right)$. And the angle $\left( {\dfrac{\pi }{2} + \theta } \right)$ is in the second quadrant of coordinate system and we know that the value of $\cos ine$ function is also negative in the second quadrant. So, the value of $\cos \left( {\dfrac{\pi }{2} + \theta } \right) = - sin\theta $. Thus, the required value of $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ is equal to $\sin \theta $.

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

10 examples of friction in our daily life

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who was the first to raise the slogan Inquilab Zindabad class 8 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

One cusec is equal to how many liters class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

A resolution declaring Purna Swaraj was passed in the class 8 social science CBSE