Evaluate the value of $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$.
A) $ - \cos \theta $
B) $\cos \theta $
C) \[\sin \theta \]
D) $ - \sin \theta $
Answer
Verified
456.6k+ views
Hint: We know a formula $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ . By applying this formula we have to expand the $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ and by putting the known value of $\cos ine$ function we will get the required value.
Complete step-by-step solution:
Here, We have to evaluate the value of $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$.
By applying the above written, formula we can expand $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ as
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \cos \dfrac{{3\pi }}{2}\cos \theta - \sin \dfrac{{3\pi }}{2}\sin \theta $
By studying trigonometric value table, we will get the value of $\cos \dfrac{{3\pi }}{2} = 0$ and $\sin \dfrac{{3\pi }}{2} = - 1$. And put these values in the above equation. This will give
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \left( 0 \right)\cos \theta - \left( { - 1} \right)\sin \theta $
Solving this we get,
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = 0 + \sin \theta $
$\therefore \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \sin \theta $
Thus, the required value of $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ is equal to $\sin \theta $.
Hence, Option (C) is correct for this question.
Note: Alternatively, this problem can be solved by writing the trigonometric expression $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ as $\cos \left( {\pi + \left( {\dfrac{\pi }{2} + \theta } \right)} \right)$ because adding $\pi $and $\left( {\dfrac{\pi }{2} + \theta } \right)$ we get the same value as $\left( {\dfrac{{3\pi }}{2} + \theta } \right)$. it is clearly visible that this angle lies in the third quadrant and we know that the value of $\cos ine$ is negative in the third quadrant so, the value of$\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = - \cos \left( {\dfrac{\pi }{2} + \theta } \right)$. And the angle $\left( {\dfrac{\pi }{2} + \theta } \right)$ is in the second quadrant of coordinate system and we know that the value of $\cos ine$ function is also negative in the second quadrant. So, the value of $\cos \left( {\dfrac{\pi }{2} + \theta } \right) = - sin\theta $. Thus, the required value of $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ is equal to $\sin \theta $.
Complete step-by-step solution:
Here, We have to evaluate the value of $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$.
By applying the above written, formula we can expand $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ as
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \cos \dfrac{{3\pi }}{2}\cos \theta - \sin \dfrac{{3\pi }}{2}\sin \theta $
By studying trigonometric value table, we will get the value of $\cos \dfrac{{3\pi }}{2} = 0$ and $\sin \dfrac{{3\pi }}{2} = - 1$. And put these values in the above equation. This will give
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \left( 0 \right)\cos \theta - \left( { - 1} \right)\sin \theta $
Solving this we get,
$ \Rightarrow \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = 0 + \sin \theta $
$\therefore \cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = \sin \theta $
Thus, the required value of $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ is equal to $\sin \theta $.
Hence, Option (C) is correct for this question.
Note: Alternatively, this problem can be solved by writing the trigonometric expression $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ as $\cos \left( {\pi + \left( {\dfrac{\pi }{2} + \theta } \right)} \right)$ because adding $\pi $and $\left( {\dfrac{\pi }{2} + \theta } \right)$ we get the same value as $\left( {\dfrac{{3\pi }}{2} + \theta } \right)$. it is clearly visible that this angle lies in the third quadrant and we know that the value of $\cos ine$ is negative in the third quadrant so, the value of$\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right) = - \cos \left( {\dfrac{\pi }{2} + \theta } \right)$. And the angle $\left( {\dfrac{\pi }{2} + \theta } \right)$ is in the second quadrant of coordinate system and we know that the value of $\cos ine$ function is also negative in the second quadrant. So, the value of $\cos \left( {\dfrac{\pi }{2} + \theta } \right) = - sin\theta $. Thus, the required value of $\cos \left( {\dfrac{{3\pi }}{2} + \theta } \right)$ is equal to $\sin \theta $.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE