Answer
Verified
425.4k+ views
Hint: Here, we will first define the term triple integral. Then we will elaborate the steps that are involved in evaluating the triple integral of an Integral function using a suitable example. Integration is a process of adding the small parts to find the whole. Integration is the inverse of differentiation and hence it is called antiderivative.
Formula Used:
We will use the following formulas:
1. Product rule of exponents: \[{a^m} \times {a^n} = {a^{m + n}}\]
2. Power rule for Exponents: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
3. Integral Formula: \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
Complete Step by Step Solution:
Triple integral is a process of Integration in a three dimensional region. Triple integral is used to compute the volume of a three dimensional region. A Triple integral will be in the form \[\int\limits_{{x_0}}^{{x_1}} {\int\limits_{{y_0}}^{{y_1}} {\int\limits_{{z_0}}^{{z_1}} {f\left( V \right)dzdydx} } } \]
First, we will integrate the inner integral by using the basic integration and then substitute the inner limits.
Then, we will integrate the middle integral and at last integrate the outer integral by using the basic integration and then substitute the middle limits.
Thus, the value obtained after evaluating the outer integral and substituting the outer limits will be the final solution of the Triple integral. We will use the triple integral in the following example.
Example: Evaluate: \[\int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } \]
Now, we will integrate the inner integral by using the basic integration, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\left[ {\dfrac{{xy{z^2}}}{2}} \right]_1^ydydx} } \]
Now, we will substitute the limits, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\left[ {\dfrac{{xy \cdot {y^2}}}{2} - \dfrac{{xy}}{2}} \right]dydx} } \]
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\left[ {\dfrac{{x{y^3}}}{2} - \dfrac{{xy}}{2}} \right]dydx} } \]
Now, we will integrate the middle integral by using the basic integration, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\dfrac{{x{y^4}}}{{2 \cdot 4}} - \dfrac{{x{y^2}}}{{2 \cdot 2}}} \right]_{ - 1}^{{x^2}}dx} \]
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\dfrac{{x{y^4}}}{8} - \dfrac{{x{y^2}}}{4}} \right]_{ - 1}^{{x^2}}dx} \]
Now, we will substitute the limits, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\left( {\dfrac{{x{{\left( {{x^2}} \right)}^4}}}{8} - \dfrac{{x{{\left( {{x^2}} \right)}^2}}}{4}} \right) - \left( {\dfrac{{x{{\left( { - 1} \right)}^4}}}{8} - \dfrac{{x{{\left( { - 1} \right)}^2}}}{4}} \right)} \right]dx} \]
Power rule for Exponents: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
Now, by using power rule for exponents, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\left( {\dfrac{{x\left( {{x^8}} \right)}}{8} - \dfrac{{x\left( {{x^4}} \right)}}{4}} \right) - \left( {\dfrac{x}{8} - \dfrac{x}{4}} \right)} \right]dx} \]
Product rule of exponents: \[{a^m} \times {a^n} = {a^{m + n}}\]
Now, by using product rule of exponents, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\left( {\dfrac{{{x^9}}}{8} - \dfrac{{{x^5}}}{4}} \right) - \left( {\dfrac{{x - 2x}}{8}} \right)} \right]dx} \]
Subtracting the like terms, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\left( {\dfrac{{{x^9}}}{8} - \dfrac{{{x^5}}}{4}} \right) - \left( {\dfrac{{ - x}}{8}} \right)} \right]dx} \]
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\left( {\dfrac{{{x^9}}}{8} - \dfrac{{{x^5}}}{4}} \right) + \dfrac{x}{8}} \right]dx} \]
Now, we will integrate the middle integral by using the basic integration, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{{x^{10}}}}{{8 \cdot 10}} - \dfrac{{{x^6}}}{{4 \cdot 6}}} \right) + \dfrac{{{x^2}}}{{8 \cdot 2}}} \right]_0^2\]
Multiplying the terms, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{{x^{10}}}}{{80}} - \dfrac{{{x^6}}}{{24}}} \right) + \dfrac{{{x^2}}}{{16}}} \right]_0^2\]
Now, we will substitute the limits, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{{2^{10}}}}{{80}} - \dfrac{{{2^6}}}{{24}}} \right) + \dfrac{{{2^2}}}{{16}}} \right]\]
Applying the exponent on terms, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{1024}}{{80}} - \dfrac{{64}}{{24}}} \right) + \dfrac{4}{{16}}} \right]\]
Simplifying the fractions, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{64}}{5} - \dfrac{8}{3}} \right) + \dfrac{1}{4}} \right]\]
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{64}}{5} \times \dfrac{{12}}{{12}} - \dfrac{8}{3} \times \dfrac{{20}}{{20}}} \right) + \dfrac{1}{4} \times \dfrac{{15}}{{15}}} \right]\]
Multiplying the terms, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{768}}{{60}} - \dfrac{{160}}{{60}}} \right) + \dfrac{{15}}{{60}}} \right]\]
Simplifying the expression, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \dfrac{{623}}{{60}}\]
Thus, the triple integral of \[\int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } \] is \[\dfrac{{623}}{{60}}\].
Therefore, a triple integral can be solved by following the procedures.
Note:
We need to keep in mind that the outer limits have to be constant and cannot depend on any of the variables. The middle limit depends only on the outer integral and does not depend on the inner integral. The inner limit depends only on the outer integral and the middle integral. Whenever we are substituting the limit, then the lower limit Integrand has to be subtracted from the upper limit value of the Integrand.
Formula Used:
We will use the following formulas:
1. Product rule of exponents: \[{a^m} \times {a^n} = {a^{m + n}}\]
2. Power rule for Exponents: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
3. Integral Formula: \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
Complete Step by Step Solution:
Triple integral is a process of Integration in a three dimensional region. Triple integral is used to compute the volume of a three dimensional region. A Triple integral will be in the form \[\int\limits_{{x_0}}^{{x_1}} {\int\limits_{{y_0}}^{{y_1}} {\int\limits_{{z_0}}^{{z_1}} {f\left( V \right)dzdydx} } } \]
First, we will integrate the inner integral by using the basic integration and then substitute the inner limits.
Then, we will integrate the middle integral and at last integrate the outer integral by using the basic integration and then substitute the middle limits.
Thus, the value obtained after evaluating the outer integral and substituting the outer limits will be the final solution of the Triple integral. We will use the triple integral in the following example.
Example: Evaluate: \[\int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } \]
Now, we will integrate the inner integral by using the basic integration, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\left[ {\dfrac{{xy{z^2}}}{2}} \right]_1^ydydx} } \]
Now, we will substitute the limits, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\left[ {\dfrac{{xy \cdot {y^2}}}{2} - \dfrac{{xy}}{2}} \right]dydx} } \]
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\left[ {\dfrac{{x{y^3}}}{2} - \dfrac{{xy}}{2}} \right]dydx} } \]
Now, we will integrate the middle integral by using the basic integration, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\dfrac{{x{y^4}}}{{2 \cdot 4}} - \dfrac{{x{y^2}}}{{2 \cdot 2}}} \right]_{ - 1}^{{x^2}}dx} \]
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\dfrac{{x{y^4}}}{8} - \dfrac{{x{y^2}}}{4}} \right]_{ - 1}^{{x^2}}dx} \]
Now, we will substitute the limits, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\left( {\dfrac{{x{{\left( {{x^2}} \right)}^4}}}{8} - \dfrac{{x{{\left( {{x^2}} \right)}^2}}}{4}} \right) - \left( {\dfrac{{x{{\left( { - 1} \right)}^4}}}{8} - \dfrac{{x{{\left( { - 1} \right)}^2}}}{4}} \right)} \right]dx} \]
Power rule for Exponents: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
Now, by using power rule for exponents, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\left( {\dfrac{{x\left( {{x^8}} \right)}}{8} - \dfrac{{x\left( {{x^4}} \right)}}{4}} \right) - \left( {\dfrac{x}{8} - \dfrac{x}{4}} \right)} \right]dx} \]
Product rule of exponents: \[{a^m} \times {a^n} = {a^{m + n}}\]
Now, by using product rule of exponents, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\left( {\dfrac{{{x^9}}}{8} - \dfrac{{{x^5}}}{4}} \right) - \left( {\dfrac{{x - 2x}}{8}} \right)} \right]dx} \]
Subtracting the like terms, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\left( {\dfrac{{{x^9}}}{8} - \dfrac{{{x^5}}}{4}} \right) - \left( {\dfrac{{ - x}}{8}} \right)} \right]dx} \]
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \int\limits_0^2 {\left[ {\left( {\dfrac{{{x^9}}}{8} - \dfrac{{{x^5}}}{4}} \right) + \dfrac{x}{8}} \right]dx} \]
Now, we will integrate the middle integral by using the basic integration, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{{x^{10}}}}{{8 \cdot 10}} - \dfrac{{{x^6}}}{{4 \cdot 6}}} \right) + \dfrac{{{x^2}}}{{8 \cdot 2}}} \right]_0^2\]
Multiplying the terms, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{{x^{10}}}}{{80}} - \dfrac{{{x^6}}}{{24}}} \right) + \dfrac{{{x^2}}}{{16}}} \right]_0^2\]
Now, we will substitute the limits, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{{2^{10}}}}{{80}} - \dfrac{{{2^6}}}{{24}}} \right) + \dfrac{{{2^2}}}{{16}}} \right]\]
Applying the exponent on terms, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{1024}}{{80}} - \dfrac{{64}}{{24}}} \right) + \dfrac{4}{{16}}} \right]\]
Simplifying the fractions, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{64}}{5} - \dfrac{8}{3}} \right) + \dfrac{1}{4}} \right]\]
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{64}}{5} \times \dfrac{{12}}{{12}} - \dfrac{8}{3} \times \dfrac{{20}}{{20}}} \right) + \dfrac{1}{4} \times \dfrac{{15}}{{15}}} \right]\]
Multiplying the terms, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \left[ {\left( {\dfrac{{768}}{{60}} - \dfrac{{160}}{{60}}} \right) + \dfrac{{15}}{{60}}} \right]\]
Simplifying the expression, we get
\[ \Rightarrow \int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } = \dfrac{{623}}{{60}}\]
Thus, the triple integral of \[\int\limits_0^2 {\int\limits_{ - 1}^{{x^2}} {\int\limits_1^y {xyzdzdydx} } } \] is \[\dfrac{{623}}{{60}}\].
Therefore, a triple integral can be solved by following the procedures.
Note:
We need to keep in mind that the outer limits have to be constant and cannot depend on any of the variables. The middle limit depends only on the outer integral and does not depend on the inner integral. The inner limit depends only on the outer integral and the middle integral. Whenever we are substituting the limit, then the lower limit Integrand has to be subtracted from the upper limit value of the Integrand.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE