Evaluate the product $(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})$ .
Answer
381.3k+ views
Hint: We have to evaluate $(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})$ , so multiply each other in step by step manner. After that, while simplifying use the properties $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}$ and $\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$ . Try it, you will get the answer.
Complete step-by-step answer:
Vector is an object which has magnitude and direction both. It is represented by a line with an arrow, where the length of the line is the magnitude and the arrow shows the direction. We can consider any two vectors as equal if their magnitude and direction are the same. It plays an important role in Mathematics, Physics as well as in Engineering. It is also known as Euclidean vector or Geometric vector or Spatial vector or simply “vector“. According to vector algebra, a vector can be added to the other vector. Let us have a detailed discussion of vector math with its definition, representation, magnitude and its operations.
The vectors are defined as an object containing both magnitude and direction. Vector describes the movement of an object from one point to another. Vector math can be geometrically picturised by the directed line segment. The length of the segment of the directed line is called the magnitude of a vector and the angle at which the vector is inclined shows the direction of the vector. The beginning point of a vector is called “Tail” and the end side (having an arrow) is called “Head.”
A vector math is defined as mathematical structure. It has many applications in physics and geometry. We know that the location of the points on the coordinate plane can be represented using the ordered pair such as $(x,y)$ . The usage of vectors are very useful in the simplification process of three-dimensional geometry. Along with the term vector, we have heard the term scalar. A scalar actually represents the “real numbers”. In simpler words, a vector of “ $n$ ” dimensions is an ordered collection of n elements called “components“.
$\begin{align}
& (3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})=3\overrightarrow{a}.2\overrightarrow{a}+3\overrightarrow{a}.7\overrightarrow{b}-5\overrightarrow{b}.2\overrightarrow{a}-5\overrightarrow{b}.7\overrightarrow{b} \\
& =6(\overrightarrow{a}.\overrightarrow{a})+21(\overrightarrow{a}.\overrightarrow{b})-10(\overrightarrow{b}.\overrightarrow{a})-35(\overrightarrow{b}.\overrightarrow{b}) \\
& =6(\overrightarrow{a}.\overrightarrow{a})+21(\overrightarrow{a}.\overrightarrow{b})-10(\overrightarrow{a}.\overrightarrow{b})-35(\overrightarrow{b}.\overrightarrow{b}) \\
& =6(\overrightarrow{a}.\overrightarrow{a})+11(\overrightarrow{a}.\overrightarrow{b})-35(\overrightarrow{b}.\overrightarrow{b}) \\
& =6{{\left| \overrightarrow{a} \right|}^{2}}+11(\overrightarrow{a}.\overrightarrow{b})-35{{\left| \overrightarrow{b} \right|}^{2}} \\
\end{align}$ …(Using property $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}$ and $\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$ )
Therefore, $(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})==6{{\left| \overrightarrow{a} \right|}^{2}}+11(\overrightarrow{a}.\overrightarrow{b})-35{{\left| \overrightarrow{b} \right|}^{2}}$ .
Note: Read the question carefully. Also, take utmost care that no terms are missing. Do not make silly mistakes while solving. While simplifying, take care that you solve it step by step. Do not confuse while solving.
Complete step-by-step answer:
Vector is an object which has magnitude and direction both. It is represented by a line with an arrow, where the length of the line is the magnitude and the arrow shows the direction. We can consider any two vectors as equal if their magnitude and direction are the same. It plays an important role in Mathematics, Physics as well as in Engineering. It is also known as Euclidean vector or Geometric vector or Spatial vector or simply “vector“. According to vector algebra, a vector can be added to the other vector. Let us have a detailed discussion of vector math with its definition, representation, magnitude and its operations.
The vectors are defined as an object containing both magnitude and direction. Vector describes the movement of an object from one point to another. Vector math can be geometrically picturised by the directed line segment. The length of the segment of the directed line is called the magnitude of a vector and the angle at which the vector is inclined shows the direction of the vector. The beginning point of a vector is called “Tail” and the end side (having an arrow) is called “Head.”
A vector math is defined as mathematical structure. It has many applications in physics and geometry. We know that the location of the points on the coordinate plane can be represented using the ordered pair such as $(x,y)$ . The usage of vectors are very useful in the simplification process of three-dimensional geometry. Along with the term vector, we have heard the term scalar. A scalar actually represents the “real numbers”. In simpler words, a vector of “ $n$ ” dimensions is an ordered collection of n elements called “components“.
$\begin{align}
& (3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})=3\overrightarrow{a}.2\overrightarrow{a}+3\overrightarrow{a}.7\overrightarrow{b}-5\overrightarrow{b}.2\overrightarrow{a}-5\overrightarrow{b}.7\overrightarrow{b} \\
& =6(\overrightarrow{a}.\overrightarrow{a})+21(\overrightarrow{a}.\overrightarrow{b})-10(\overrightarrow{b}.\overrightarrow{a})-35(\overrightarrow{b}.\overrightarrow{b}) \\
& =6(\overrightarrow{a}.\overrightarrow{a})+21(\overrightarrow{a}.\overrightarrow{b})-10(\overrightarrow{a}.\overrightarrow{b})-35(\overrightarrow{b}.\overrightarrow{b}) \\
& =6(\overrightarrow{a}.\overrightarrow{a})+11(\overrightarrow{a}.\overrightarrow{b})-35(\overrightarrow{b}.\overrightarrow{b}) \\
& =6{{\left| \overrightarrow{a} \right|}^{2}}+11(\overrightarrow{a}.\overrightarrow{b})-35{{\left| \overrightarrow{b} \right|}^{2}} \\
\end{align}$ …(Using property $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}$ and $\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$ )
Therefore, $(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})==6{{\left| \overrightarrow{a} \right|}^{2}}+11(\overrightarrow{a}.\overrightarrow{b})-35{{\left| \overrightarrow{b} \right|}^{2}}$ .
Note: Read the question carefully. Also, take utmost care that no terms are missing. Do not make silly mistakes while solving. While simplifying, take care that you solve it step by step. Do not confuse while solving.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Why do noble gases have positive electron gain enthalpy class 11 chemistry CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
