# Evaluate the product $(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})$ .

Last updated date: 24th Mar 2023

•

Total views: 306.3k

•

Views today: 4.83k

Answer

Verified

306.3k+ views

Hint: We have to evaluate $(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})$ , so multiply each other in step by step manner. After that, while simplifying use the properties $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}$ and $\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$ . Try it, you will get the answer.

Vector is an object which has magnitude and direction both. It is represented by a line with an arrow, where the length of the line is the magnitude and the arrow shows the direction. We can consider any two vectors as equal if their magnitude and direction are the same. It plays an important role in Mathematics, Physics as well as in Engineering. It is also known as Euclidean vector or Geometric vector or Spatial vector or simply “vector“. According to vector algebra, a vector can be added to the other vector. Let us have a detailed discussion of vector math with its definition, representation, magnitude and its operations.

The vectors are defined as an object containing both magnitude and direction. Vector describes the movement of an object from one point to another. Vector math can be geometrically picturised by the directed line segment. The length of the segment of the directed line is called the magnitude of a vector and the angle at which the vector is inclined shows the direction of the vector. The beginning point of a vector is called “Tail” and the end side (having an arrow) is called “Head.”

A vector math is defined as mathematical structure. It has many applications in physics and geometry. We know that the location of the points on the coordinate plane can be represented using the ordered pair such as $(x,y)$ . The usage of vectors are very useful in the simplification process of three-dimensional geometry. Along with the term vector, we have heard the term scalar. A scalar actually represents the “real numbers”. In simpler words, a vector of “ $n$ ” dimensions is an ordered collection of n elements called “components“.

$\begin{align}

& (3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})=3\overrightarrow{a}.2\overrightarrow{a}+3\overrightarrow{a}.7\overrightarrow{b}-5\overrightarrow{b}.2\overrightarrow{a}-5\overrightarrow{b}.7\overrightarrow{b} \\

& =6(\overrightarrow{a}.\overrightarrow{a})+21(\overrightarrow{a}.\overrightarrow{b})-10(\overrightarrow{b}.\overrightarrow{a})-35(\overrightarrow{b}.\overrightarrow{b}) \\

& =6(\overrightarrow{a}.\overrightarrow{a})+21(\overrightarrow{a}.\overrightarrow{b})-10(\overrightarrow{a}.\overrightarrow{b})-35(\overrightarrow{b}.\overrightarrow{b}) \\

& =6(\overrightarrow{a}.\overrightarrow{a})+11(\overrightarrow{a}.\overrightarrow{b})-35(\overrightarrow{b}.\overrightarrow{b}) \\

& =6{{\left| \overrightarrow{a} \right|}^{2}}+11(\overrightarrow{a}.\overrightarrow{b})-35{{\left| \overrightarrow{b} \right|}^{2}} \\

\end{align}$ …(Using property $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}$ and $\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$ )

Therefore, $(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})==6{{\left| \overrightarrow{a} \right|}^{2}}+11(\overrightarrow{a}.\overrightarrow{b})-35{{\left| \overrightarrow{b} \right|}^{2}}$ .

Note: Read the question carefully. Also, take utmost care that no terms are missing. Do not make silly mistakes while solving. While simplifying, take care that you solve it step by step. Do not confuse while solving.

__Complete step-by-step answer:__Vector is an object which has magnitude and direction both. It is represented by a line with an arrow, where the length of the line is the magnitude and the arrow shows the direction. We can consider any two vectors as equal if their magnitude and direction are the same. It plays an important role in Mathematics, Physics as well as in Engineering. It is also known as Euclidean vector or Geometric vector or Spatial vector or simply “vector“. According to vector algebra, a vector can be added to the other vector. Let us have a detailed discussion of vector math with its definition, representation, magnitude and its operations.

The vectors are defined as an object containing both magnitude and direction. Vector describes the movement of an object from one point to another. Vector math can be geometrically picturised by the directed line segment. The length of the segment of the directed line is called the magnitude of a vector and the angle at which the vector is inclined shows the direction of the vector. The beginning point of a vector is called “Tail” and the end side (having an arrow) is called “Head.”

A vector math is defined as mathematical structure. It has many applications in physics and geometry. We know that the location of the points on the coordinate plane can be represented using the ordered pair such as $(x,y)$ . The usage of vectors are very useful in the simplification process of three-dimensional geometry. Along with the term vector, we have heard the term scalar. A scalar actually represents the “real numbers”. In simpler words, a vector of “ $n$ ” dimensions is an ordered collection of n elements called “components“.

$\begin{align}

& (3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})=3\overrightarrow{a}.2\overrightarrow{a}+3\overrightarrow{a}.7\overrightarrow{b}-5\overrightarrow{b}.2\overrightarrow{a}-5\overrightarrow{b}.7\overrightarrow{b} \\

& =6(\overrightarrow{a}.\overrightarrow{a})+21(\overrightarrow{a}.\overrightarrow{b})-10(\overrightarrow{b}.\overrightarrow{a})-35(\overrightarrow{b}.\overrightarrow{b}) \\

& =6(\overrightarrow{a}.\overrightarrow{a})+21(\overrightarrow{a}.\overrightarrow{b})-10(\overrightarrow{a}.\overrightarrow{b})-35(\overrightarrow{b}.\overrightarrow{b}) \\

& =6(\overrightarrow{a}.\overrightarrow{a})+11(\overrightarrow{a}.\overrightarrow{b})-35(\overrightarrow{b}.\overrightarrow{b}) \\

& =6{{\left| \overrightarrow{a} \right|}^{2}}+11(\overrightarrow{a}.\overrightarrow{b})-35{{\left| \overrightarrow{b} \right|}^{2}} \\

\end{align}$ …(Using property $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}$ and $\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$ )

Therefore, $(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})==6{{\left| \overrightarrow{a} \right|}^{2}}+11(\overrightarrow{a}.\overrightarrow{b})-35{{\left| \overrightarrow{b} \right|}^{2}}$ .

Note: Read the question carefully. Also, take utmost care that no terms are missing. Do not make silly mistakes while solving. While simplifying, take care that you solve it step by step. Do not confuse while solving.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?